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Preface

This Deliverable (D.3.1) will evaluate the performance of the three evapotranspiration
models and two thermal sharpening methods that were previously selected during the
review of existing remote sensing ET models (D.1.1, [1]). Part of this deliverable is intended
to be submitted for a scienti�c publications and thus it is presented in manuscript format,
as much as possible, in Chapter 1. The following chapters describe in more detail the
processing of Sentinel and ancillary data (Ch. 4) and model prototypes (3). Finally we
added a chapter proposing future scienti�c activities/projects that could be carried out in
Phase 2 and/or after SET-ET project (Ch. 5) and recommendations for a possible future
high-resolution thermal ESA mission (Ch. 6)
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Chapter 1

High resolution evapotranspiration

using Sentinel-2 and 3: Evaluation of

METRIC, TSEB and ESVEP models

with thermal sharpening methods

1.1 Introduction

The �uxes of water (e.g. evapotranspiration - ET) and energy (e.g. of latent and sensible
heat) at the surface of the Earth are critical to quantify for many applications in the �elds
of climatology, meteorology, hydrology and agronomy. Easy access to reliable estimations
of ET is considered a key requirement within natural resource management, and if ET can
be estimated accurately enough it holds a vast potential to assist in the current attempts of
meeting the UN Sustainable Development Goals (SDG), e.g. SDG2 � zero hunger, or SDG6
� clean water and sanitation (https://sustainabledevelopment.un.org, last accessed
10 December 2018). Water and energy �uxes show large spatio-temporal variability since
they are highly dependent not only on the meteorological conditions, but also on di�erent
characteristics and properties of the land surface, such as soil moisture/water availability,
land cover type and amount of vegetation biomass and its health. Remote sensing data can
provide spatially-distributed information about relevant land surface states and properties
used to model the relevant �uxes and hence this technology addresses a key limitation
of conventional point scale observations when estimating �uxes at watershed and regional
scales. In particular, thermal remote sensing has been widely used for assessing land surface
turbulent �uxes [2]. While there are a variety of existing remote sensing ET methods and
data options available [3], none is fully satisfying the user needs for reliable, operational
and easy accessible estimates and tools able to derive ET at agricultural-parcel scale. The
limitations have so far primarily been centred on the lack of suitable satellite-based input
data sources.

With the recent launch of Sentinel 2 and 3, the data foundation for producing opera-
tional ET maps has been set [4]. Coupled with extensive existing research, and not least the
maturity of open source software, the reliability and accessibility of ET estimates can now
be increased substantially. The combined use of Sentinel 3 and 2 constellation of satellites
provides a unique opportunity for providing operational estimates of ET. Sentinel 3 SLSTR
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instrument acquires daily thermal infrared (TIR) information of the surface at ca. 1 km
scale. However, the reliable estimation of ET in agricultural and heterogeneous landscapes
requires that the model's spatial resolution matches the dominant landscape feature scale,
usually tens or hundreds of meters. Sentinel 2, with a spatial resolution ranging from 10
to 60 m and 5 day revisit time with Sentinel 2A & B combined, can resolve part of these
scaling issues, although it lacks a TIR instrument at high spatial resolution such as in the
Landsat missions. Therefore sharpening [5, 6, 7] and/or disaggregation methods [8] are
required to bridge the spatial gap between the currently available Sentinel constellation's
thermal and optical observational capabilities in order to optimally exploit the synergies
of both types of sensors for �eld-scale ET estimations.

Several data fusion methods have been proposed to merge low resolution thermal in-
frared imagery with high resolution optical imagery in order to obtain estimates of surface
temperature (Trad) and/or ET at high spatial resolution. In this study we focus on di�er-
ent, but possibly complementary, approaches: empirical and semi-empirical methods that
exploit relationships between optical bands and thermal or ET data (hereinafter called
image sharpening methods); and physically-based ET downscaling methods (hereinafter
called ET disaggregation). Thermal image sharpening uses information from the ther-
mal and optical images themselves to calibrate empirical or semi-empirical models. Those
models relate coarse resolution Trad (or ET) with coarse resolution (or �ne resolution ag-
gregated to coarse resolution) optical bands, and then apply the calibrated model to the
�ne scale optical image, producing either a sharpened Trad, or directly an ET product.
This image sharpening approach relies on the direct or indirect relationship that di�erent
regions of the optical spectrum have with the radiometric temperature and/or the ET
process. For instance the temperature of denser canopies, with higher contrast between
visible and near-infrared bands, is lower than the temperature of bare soils [9, 10]. On the
other hand, surfaces with higher water content (i.e. larger absorption in the short-wave
infrared) have a larger evaporative capability and hence lower temperature [11]. likewise,
higher chlorophyll concentrations (i.e. larger absorption in the red and red-edge regions)
might lead to higher light and water use e�ciency and hence lower temperatures.

One of the �st attempts to sharpen Trad was TsHARP [12], in which tested di�erent
regression models between Trad and NDVI. Since then, TsHARP has been utilised as
reference method for developing and testing other sharpening methods [6, 13, 14]. The
Data Mining Sharpening (DMS) approach [6] used local and global regression trees between
re�ective bands and Trad of homogeneous samples at coarse scale (based on coe�cient
of variation threshold). Residual analysis was performed to ensure energy conservation
(based on emitted radiances) between original resolution and sharpened images. To avoid
over�tting of regression trees such as in DMS the use of random forests was proposed
instead [15]. Following with the machine learning algorithms, Yang et al. [16] used an
Arti�cial Neural Network with Genetic Algorithm and Self-Organizing Feature Mapping
trained with di�erent land surface parameters for each land cover class (vegetation, bare
soil, urban and water). The use of a contextual algorithm can also be applied in sharpening,
such as is the case of DISPATCH-LST (DISaggregation based on Physical And Theoretical
scale CHange). Merlin et al. [5] which used optical information on fractional vegetation
cover and fractional photosynthetically active vegetation cover in contextual scatterplots
of fractional green vegetation cover versus Trad and albedo versus Trad to de�ne minimum
and maximum soil and canopy endmember temperatures. Finally, two or more di�erent
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methods can be used together and combined through weighted averaging, such as in Chen
et al. [17], who combined TsHARP and a Thin Plate Spline interpolation by weighting their
corresponding residuals. Besides of the fact that all methods described above can be used
as well to sharpen ET, other studies have already suggested methods to directly downscale
coarse scale ET using optical data [18, 19, 20, 21]. In any case, optical images provide
limited information related to some surface energy balance processes, such as turbulent
transport, soil moisture, and meteorological forcing. Therefore ancillary variables could
be included in Trad or ET sharpening such as land cover maps (to account for di�erent
aerodynamic roughness), local meteorology, or surface geometry [22]. Nevertheless, a step
that was found to signi�cantly enhance the accuracy of the �uxes derived with sharpened
Trad, was to use a �disaggregation� approach [23, 8] to ensure spatial consistency between
�uxes at �ne and coarse spatial scales [4]. In that approach, the �uxes are �rst estimated
at the coarse scale at which the thermal observations were acquired. Afterwards, all the
high-resolution �ux pixels falling within one low-resolution �ux pixel are adjusted (by
varying the low-resolution air temperature) until there is a consistency between the two
scales. This is done under the assumption that the coarse scale estimates are more accurate
since they are derived with the Trad with original spatial resolution. This disaggregation
approach usually improves the results compared to when applying the ET models with
either coarse or �ne resolution alone [23, 24, 4].

The latent heat �ux λE (or ET) can be estimated as the residual of the surface energy
budget, using estimates of the net radiation (Rn), soil heat �ux (G) and sensible heat
�ux (H), assuming other energy terms (heat advection A, heat storage in the canopy layer
S, and energy for photosynthesis λcF) are negligible. The thermal-based ET models were
originally formulated for computing H, which is governed by the bulk resistance equation for
heat transfer [25], and is driven by the gradient between an ensemble surface temperature,
called the �aerodynamic surface temperature� (T0), and the surface layer air temperature.
Besides of the estimation of that surface-to-air temperature gradient, the estimation of
H requires the modelling of an aerodynamic resistance term, which can be viewed as a
simpli�cation of the complex turbulent transport of heat, momentum and water vapour,
by using a similarity with Ohm's law for electric transport. These resistances therefore
represent how e�ciently a scalar (heat, momentum or water vapour) is transported from
one point to another following a gradient (i.e. vertical di�erences of temperature and/or
vapour pressure). Several formulations and/or parametrizations have been proposed to
describe these turbulent transport processes but generally they include variables related
to surface aerodynamic roughness, wind speed as well as wind attenuation through the
canopy, and atmospheric stability [26]

The challenge in resistance energy balance models is that T0 cannot be directly esti-
mated by remote sensing [27, 28]. Hence, remote sensing ET models di�er from each other
on how the existing di�erence between the radiometric temperature (Trad) observed by
satellite sensors and T0 is considered. Single-source or bulk transfer schemes for modelling
H treat soil and canopy as a single �ux source and often employ an additional resistance
term (RAH , usually dependent on the Stanton number kB−1) because heat transport is
less e�cient than momentum transport from land surface (see e.g. Garratt and Hicks [29]
or Verhoef et al. [30]). Appropriately calibrated, one-source energy balance (OSEB) mod-
els have shown satisfactory estimates of surface energy �uxes in heterogeneous landscapes
[31, 32, 33, 34]. However, due to the di�culty in robustly and parsimoniously parametrizing
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Rex for OSEB schemes at di�erent landscapes, climates, and observational con�gurations
[35], the two-source energy balance (TSEB) modelling approach was developed [36]. TSEB
models partition the surface energy �uxes and the radiometric temperature between nomi-
nal soil and canopy sources, and include a more physical representation of processes related
to Trad and T0 without requiring any additional input information beyond that needed by
single-source models using more sophisticated kB−1 parametrizing. However, because di-
rect measurements of canopy (TC) and soil (TS) temperatures rarely are available, in most
applications these component temperatures are derived from a measurement of the bulk
surface radiometric temperature Trad. Partitioning of Trad between TC and TS requires
some assumptions related to the evaporative e�ciency of soil or canopy [36, 37, 38].

Finally, like all remote sensing retrievals, satellite radiometric temperature is prone to
uncertainty due to sensor noise, surface emissivity and atmospheric e�ects. To overcome
this issue in ET estimation, several methods have been proposed based on either contextual
models [39, 40, 41], by constraining the ET range between hot (no ET) and cold (potential
ET) pixels [31, 32], or using time-di�erenced morning temperature rise [42, 43]. Regarding
the contextual methods, all of them require homogeneous forcing and coupling between
land surface/atmosphere which is a disadvantage when applied at large scales. In addition,
those models assume that the coldest pixel in the image means potential transpiration, and
the hottest pixel means zero transpiration which is not always the case (e.g. in humid and
sub-humid areas).

In this study we will evaluate three di�erent ET models with Sentinel imagery: MET-
RIC [32] is a one source energy balance model that is less sensitive to heat transfer coe�-
cient parametrizing than other OSEB model such as SEBS [33]; TSEB-PT [36] as a widely
used two source energy balance model; and ESVEP [44] as a hybrid contextual-two source
energy balance model.

1.2 Materials and Methods

1.2.1 Description of ET models

The energy balance can be expressed as (1.1)

Rn ≈ G+H + λE (1.1)

where net radiation Rn is a key element in the energy budget of the land surface as it deter-
mines the available energy that the land utilises for water evapotranspiration (latent heat
�ux, λE) and for heating up the overlying air layer (sensible heat �ux, H). Since ET is the
combined process of soil evaporation and canopy transpiration, Rn can be also be parti-
tioned into soil (Rn,S) and canopy net radiation (Rn,C), with both sensible and latent heat
�ux also partitioned between soil (i.e. evaporation process) and canopy (transpiration).

Using remote sensing data to derive Rn has proven to be a sound alternative to ground-
based measurements. Di�erent approaches have been proposed to estimate surface albedo,
ranging from empirical relationships between ground measured albedo and the di�erent
re�ective bands in satellite [45] to more physically based methods relying on modeling the
surface anisotropic e�ects [46, 47]. Indeed, one of the major challenges when estimating
albedo with satellite remote sensing data is that such sensors typically measure the outgoing
radiance at a given direction while the estimation of albedo needs to account for the
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outgoing radiance in all the directions of the hemisphere [48, 49]. Methods based on
the modelling of those bidirectional e�ects have proven to be e�ective to overcome this
challenge. Based on the di�erent spectral behaviour of soil and vegetation for the visible
(PAR) and near infrared regions (NIR) of the spectrum, Kustas and Norman [50] proposed
a method for retrieving soil and canopy shortwave net radiation. Such approach is based
on the radiative transfer model (RTM) described in Campbell and Norman [51] to obtain
estimates of soil and canopy albedo as well as canopy transmittance in the PAR and NIR.
This approach requires as inputs Leaf Area Index and leaf inclination distribution [52], the
di�erent bihemispherical re�ectances and transmittances of soil and a single leaf, and the
proportion of di�use radiation. However, this approach assumes homogeneous canopies
and it requires some corrections when dealing with clumped canopies [53]. On the other
hand, longwave net radiation is primarily driven by the thermal radiation emitted by the
surface, which depends on surface emissivity and skin temperature following the Stefan-
Boltzman law. Besides, Kircho�'s law can be applied to derive the atmospheric longwave
radiation that is absorbed by the surface. As in modelling shortwave net radiation, surface
anisotropy can also be considered in estimating the net longwave radiation, considering that
leaves and soil have di�erent temperatures and hence emit di�erent amounts of thermal
radiation [50].

Soil heat �ux G is usually assumed to be a ratio of the soil net radiation. Choudhury
et al. [54], Bastiaanssen et al. [31] suggested that G is ca. 35% the radiation absorbed by
the soil around midday hours. However, in cases when remote sensing data is acquired
earlier in the morning or later in the afternoon, the assumption of a constant ratio between
G and Rn,S is less reliable [55], and curve that is function of time is usually applied instead
[37].

Mapping EvapoTranspiration at high Resolution with Internalized Calibration,

METRIC

Sensible heat �ux in METRIC is derived in a contextual manner by �nding hot and cold
pixels (Eq. 1.2).

H = ρCp
δT

RAH
(1.2a)

δT = c+mTrad (1.2b)

where δT is the estimated gradient between aerodynamic and air temperature, estimated
as a linear equation function of Trad with c and m parameters are linearly solved from
expressing Eq. 1.2b from two cold and hot endpoints:

m =
δThot − δTcold
Thot − Tcold

(1.3a)

c = δThot −mThot (1.3b)

METRIC scales λE between these two hot (Thot) and cold (Tcold) endmembers based
on a linear relationship between actual ET and reference ET using the standardised ASCE
Penman-Monteith equation for an ideal alfalfa �eld [56]. Therefore, METRIC, as opposed
to SEBAL [31], does not assume zero sensible heat �ux at the cold pixel, which can have
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a positive impact at well watered areas under large vapour pressure de�cit conditions.
According to Allen et al. [32], cold pixels yield a 5% larger ET than the reference ET
(λEcold = 1.05λEref ), but earlier in the season and o�-season, cold pixel ET is instead
a function of fractional cover or NDVI: λEcold/λEref = f (NDV I). On the other hand,
METRIC overcomes the issue of estimating kB−1 by computing RAH using the pro�le at
two di�erent heights above z0H . Finally the authors stated the need for either computing
an �excess resistance� in aerodynamically rough and dry surfaces when using the δT cal-
ibration performed over agricultural areas, or calibrating di�erent δT slopes at di�erent
land covers/environmental conditions [32].

For Eq. 1.2 to hold true, δT and H require constant wind speed at the application
domain, so the model uses wind speed at blending height to overcome this issue. It also
requires constant irradiance and air temperature, i.e. δT changes are only either due to
soil moisture or aerodynamic roughness. Furthermore, the model requires heterogeneity
in hydrologic and vegetation conditions and therefore we applied METRIC over two dif-
ferent vegetation domains, short vegetation (crops, grass and shrubs) and tall vegetation
(broadleaved and conifer forests as well as wooded savannas). Finally, METRIC is sensi-
tive to the de�nition of hot and cold pixels. Several di�erent methodologies to �nd those
endmember values were proposed, which can be especially challenging in heterogeneous
areas where pixels become mixed at coarse spatial resolution. In our case we adopted the
Exhaustive Search Algorithm solution proposed by Bhattarai et al. [57]. More details on
METRIC and its implementation in this study can be found in Section 3.2 of Chapter 3.

Priestley-Taylor Two-Source Energy Balance model, TSEB-PT

Two-source energy balance models treat the land surface as two layers, soil and canopy,
contributing to the energy and water �uxes (Eq. 1.4)

Rn,C = HC + λECRn,S = HS + λES +G (1.4)

where soil (canopy) sensible heat �ux is computed from the gradient between the soil
(canopy) temperature (TS and TC respectively) and the air temperature at the sink-source
height (equivalent to T0). Since TC and TS are unknown a priori, they are estimated in an
iterative process in which it is �rst assumed that green canopy (expressed as the fraction
of LAI that is green, fg) transpires a potential rate based on Priestley�Taylor formulation
(λEC = αPT fg

∆
∆+γRn,veg, αPT = 1.26)[36]. Then the canopy transpiration is sequentially

reduced (i.e. αPT < 1.26) until realistic �uxes are obtained (λEC ≥ 0 and λES ≥ 0)

TSEB-PT probably is the model that requires most accurate retrievals of physical
inputs (LAI and Trad), and studies already reported larger uncertainty in senescent veg-
etation and very dense (high LAI) or tall vegetation [43, 58]. It is more complex than
METRIC and therefore has a large number of parameters and modelling options. Finally,
the Priestley�Taylor formulation was shown to produce larger uncertainty in highly ad-
vection conditions, cases in which initializing λEC with a Penman-Monteith formulation
showed better results [37]. More details on TSEB-PT and its implementation in this study
can be found in Section 3.3 of Chapter 3.
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End-member-based Soil and Vegetation Energy Partitioning, ESVEP

ESVEP is based on a trapezoid Trad−fcover framework, in which it considers �uxes acting
in a �parallel� soil and canopy system [44]. As in TSEB-PT, ESVEP partitions Trad as a
linear weight of emitted radiance. Other similar models to ESVEP are HTEM [59] and
TTEM [60], but ESVEP solves the trapezoid in a pixel-per-pixel basis overcoming the need
for homogeneous weather forcing and roughness (Eq. 1.5a).

TS,max =
ra (Rn,soil −G)

ρaCp
+ TA (1.5a)

TC,max =
raRn,veg
ρaCp

γ (1 + rb,dry/ra)

∆ + γ (1 + rb,dry/ra)
− vpd

∆ + γ (1 + rb,dry/ra)
+ TA (1.5b)

TS,min =
ra (Rn,soil −G)

ρaCp

γ

∆ + γ
− vpd

∆ + γ
+ TA (1.5c)

TC,min =
raRn,veg
ρaCp

γ (1 + rb,wet/ra)

∆ + γ (1 + rb,wet/ra)
− vpd

∆ + γ (1 + rb,wet/ra)
+ TA (1.5d)

More details on ESVEP and its implementation in this study can be found in Section
3.4 of Chapter 3.

1.2.2 Validation sites

Eleven eddy covariance EC sites were used in this study, covering a wide range of land
cover types and climates. Sites are summarised in table 1.1 and data used in validation
included four component of radiation Rn(shortwave/longwave downwelling/upwelling), soil
heat �ux G, sensible heat �ux H, and latent heat �ux λE. In addition, friction velocity,
Monin-Obukhov length, and wind direction data from the EC system was used to estimate
the satellite pixel footprint contribution [61, 62] to the turbulent �uxes at the satellite
overpass. Validation sites comprise 5 agricultural sites, both irrigated and rainfed, includ-
ing row crops (e.g. vineyard) and an olive grove. In addition, two sites over grassland,
one humid meadow (Hyltemossa) and a semi-arid steppe (Walnut Gulch), two on conifer
and one one broadleaved forests are also included in the validation list. Finally, complex
heterogeneous landscapes are represented by two wooded savannas. From all these sites,
3 are on Mediterranean climate, and two more on semi-arid climates, whereas the rest of
the sites are located in temperate climates.

Error metrics included mean bias error (
∑

(Obs.− Pred.)/N), root mean squared error

(RMSE =
√∑

(Obs.− Pred.)2/N), relative RMSE (RMSE/Obs, and Pearson correla-
tion coe�cient between observed and predicted. Due to the lack of energy closure in
the eddy covariance data, previous metrics were computed after adding the energy bal-
ance residual (residual = Rn,EC − GEC − λEEC − HEC) to the latent heat �ux. How-
ever, additional metrics were computed considering the lack of closure uncertainty in
both measured latent and sensible heat �uxes. Observed latent heat �ux λEObs. would
range between λEEC and λEEC + residual. Likewise observed sensible heat �ux would
range between HEC and HEC + residual. Then we counted the number of predicted val-
ues in H and λE that fall within those expected ranges. Furthermore, we computed
then mean squared distance of the predicted turbulent �uxes to the boundaries of these
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Table 1.1: Description of eddy covariance sites used for validation. Sites are listed in
alphabetic order. Z shows the EC measurement height in meters, while the contact person
for the EC tower is credited in PI

Site (abrevation) Land cover Climate Z (m) PI

Borden (BO) Cropland, irrigated
(vineyard)

Mediterranean 5 William P. Kustas
(ARS-USDA)

Choptank (CH) Cropland, irrigated
(rotation of corn and
soybean)

Temperate 5 William P. Kustas
(ARS-USDA)

Dahra (DA) Savanna Semi-arid 9 Torbern Tagesson
(Univ. Copenhagen)

Grillenburg (GR) Grassland, meadow Temperate 3 J. Thomas Gruen-
wald (T.U. Dresden)

Harvard Forest (HF) Broadleaved forest Temperate 30 J. William Munger
(Harvard Univ.)

Hyltemossa (HY) Conifer forest
(spruce)

Temperate 27 Jutta Hols t (Lund
Univ.)

Klingenberg (KL) Cropland (spring
barley and catch
crops)

Temperate 3.5 J. Thomas Gruen-
wald (T.U. Dresden)

Majadas de Tieétar (MT) Savanna Mediterranean 15.5 Arnaud Carrara
(CEAM)

Selhausen (SE) Cropland (sugar
beets and winter
barley)

Temperate 2 Mathias Schmidt
(Jülich)

Taous (TA) Cropland, rainfed
(olive)

Mediterranean 9.5 Gilles Boulet (CES-
BIO)

Walnut Gulch (WG) Grassland, steppe Semi arid 4 Russell Scott (ARS-
USDA)
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intervals (i.e. d = 0 if the predicted value is within the observed interval, otherwise

d = min
[
(XPred. −XEC)2 , (XPred. −XEC + residual)2

]
for either X = H or X = λE).

1.2.3 Input data sources

The input data required to run the evapotranspiration models came from three main and
two ancillary sources. The main sources were: Sentinel-2 optical observations, Sentinel-3
thermal observations and European Center for Medium-rangeWeather Forecasts (ECMWF)
ERA-5 meteorological reanalysis data. The ancillary sources were: a digital elevation model
(DEM) from the Shuttle Radar Topography Mission (SRTM) satellite, and land cover map
created as part of the ESA Climate Change Initiative (CCI).

Satellite data

The main satellite data inputs come from the Sentinel-2 (both A and B) and Sentinel-3
(A only) satellites. In particular, the high-resolution shortwave observations needed to
characterise the state of vegetation in the evapotranspiration model as well as to sharpen
TIR data were obtained by the MultiSpectral Instrument (MSI) on board of the Sentinel-
2A & 2B satellites. MSI acquires re�ectance information in 13 spectral bands (with central
wavelength ranging from 444 nm to 2202 nm) with a spatial resolution of 10 m, 20 m, or
60 m (depending the spectral band) and global geometric revisit of at least 5 days when
both satellites are considered [63]. The MSI sensor has 3 spectral bands in the leaf-pigment
sensitive red-edge part of the electromagnetic spectrum and two bands in water-content
sensitive shortwave-infrared part of the spectrum, in addition to the more traditional visible
and near-infrared bands, which makes it well suited for vegetation mapping and monitoring
[64]. For each of the validation sites, all Sentinel-2 images for year 2017 were visually
scanned and the ones which were cloud, fog and shadow free in the closes vicinity of the
�ux towers locations were selected for processing.

L1C top of the atmosphere images were converted to bottom-of-atmosphere (BOA)
re�ectances (L2A) using the Sen2Cor atmospheric correction processor [65] v2.5.5. BOA
re�ectance values were then used as input to the Biophysical Processor [66] available in the
SNAP software v6.0.1 (step.esa.int - last accessed 28.11.2018) in order to obtain e�ective
values of green Leaf Area Index (LAI), Fractional Vegetation Cover (FVC), Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Chlorophyll Content
(CCC) and Canopy Water Content (CWC). The fraction of vegetation which is green and
transpiring (fg) was estimated based on Fisher et al. [67] (Eq. 1.6).

fg = FAPAR/FIPAR (1.6)

where FIPAR is the fraction of photosynthetically active radiation intercepted by green
and brown vegetation. FAPAR was obtained from the biophysical processor as described
above, while FIPAR was derived iteratively from Eq. 1.7 Campbell and Norman [51].

FIPAR = 1− exp
−0.5PAI

cos θ
(1.7)

where θ is the solar zenith angle at the time of the S2 overpass, and PAI is the plant area
index with initial PAI equal to LAI and in subsequent iterations

PAI = LAI/fg (1.8)
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until fg converges. Two assumptions made in Eq. 1.7 are that all intercepted PAR comes
from the solar beams, and that both FAPAR and FIPAR are computed from a canopy with
a spherical leaf inclination distribution. Indeed, from the the average leaf angle histogram,
from which the training database was built in Weiss and Baret [66], most training cases in
the Biophysical processor correspond to a spherical distribution (mode at 60 ◦). Equation
1.8 was subsequently used within the land surface models to convert LAI, which was
assumed to represent green LAI [66], into PAI. Afterwards, PAI, leaf bi-hemispherical
re�ectance and transmittance, together with constant values for soil re�ectance in the
visible (V IS = [400 − 700] nm, ρsoil,V IS = 0.15) and near infrared (NIR = [700 − 2500]
nm, ρsoil,NIR = 0.25) were used to quantify the shortwave net radiation of the soil and
canopy (see section 3.1 for algorithm details). Leaf chlorophyll concentration (i.e. Ca+b =
CCC/LAI) was used to derive the leaf bihemispherical re�ectance and transmittance in the
visible after a curve �tting of 45000 ProspectD [68] simulations. Likewise, equivalent water
thickness (i.e. Cw = CWC/LAI) was used to retrieve leaf bihemispherical re�ectance and
transmittance in the NIR region.

The thermal data needed to drive the evapotranspiration model was obtained from
the Sea and Land Surface Temperature Radiometer (SLSTR) on board of the Sentinel-3A
satellite [69]. SLSTR contains 3 thermal infrared (TIR) channels (with two dynamic range
settings - for �re monitoring and for sea/land surface temperature monitoring) with 1 km
spatial resolution and less than two days temporal resolution with one satellite (less than
one day with both A and B satellites) at the equator. For each selected S2 scene, all
the S3 scenes falling on the day of S2 overpass or within four days after, were selected
for processing. In the current study two SLSTR brightness temperature (BT) bands (S8 -
centred on 10.85 µm and S9 - centred on 12 µm) were used within a split-window algorithm
described by [70] that, together with inputs of Total Column Water Vapour and surface
emissivity, derived the 1 km Trad dataset.

Finally, the parameters in the ET models that could not be directly retrieved from
optical observations (e.g. vegetation height or leaf inclination angle) were set based on a
land cover map and a look-up table (see Table 1.2). The CCI landcover map from 2015
[71], which was produced with a global coverage and 300 m spatial resolution, was used as
the initial input layer before being reclassi�ed into the smaller number of classes as shown
in Table 1.2. Out of the parameters set according to the look-up table, the vegetation
height (hC) has the largest in�uence on the modelled �uxes as it e�ects aerodynamic
roughness [72, 73]. Therefore in herbaceous classes where it can change throughout the
growing season (grasslands and croplands) it was scaled with PAI using a power law,
with maximum value hC,max indicated in Table 1.2 reached at a prescribed maximum PAI
PAImax (5 in croplands and 4 in grasslands) and a minimum value set to 10 % of the
maximum value.

Meteorological data source

The meteorological data used in this study consists of air temperature at 2 m, dew point
temperature at 2 m, wind speed at 10 m, surface pressure, TCWV and aerosol optical
thickness (AOT) at 550 nm, surface roughness and surface geopotential. Those inputs are
obtained from the ECMWF ERA5 reanalysis ensemble means dataset [74]. The only two
exceptions are the AOT and surface roughness which come from the Copernicus Atmo-
sphere Monitoring Service (CAMS) forecast dataset [75], since they are not included in
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Table 1.2: Land cover based Look-Up-Table for ancillary parameters used in ET models.
CCI-LC is the land cover code for the ESA's CCI land cover legend; IGBP, code for
the equivalent IGBP standard land cover legend; hC,max is the maximum canopy height
occurring when PAI reaches PAImax; fC is fraction of the ground occupied by a clumped
canopy (fC = 1 for a homogeneous canopy); wC is canopy shape parameter, representing
the canopy width to canopy height ratio; lw is the average leaf size; χ Campbell [52] leaf
angle distribution parameter. See Chapter 3 for more details on the contribution of these
parameters to the di�erent models

CCI-LC (�) IGBP (�) hC,max (m) PAImax (�) fC (�) wC/hC (�) lw (m) χ

0 255 0 0 0 0 0 0
10 12 1.2 5 1 1 0.02 0.5
11 12 1 5 1 1 0.02 0.5
12 12 2 5 0.5 2 0.1 1
20 12 1.2 5 1 1 0.02 0.5
30 14 1.2 5 0.5 1 0.05 0.5
40 14 1.2 5 0.5 1 0.1 0.5
50 2 10 5 1 1 0.15 1
60 4 10 5 1 1 0.15 1
61 4 10 5 1 1 0.15 1
62 4 10 5 0.4 1 0.15 1
70 1 20 5 1 2 0.05 1
71 1 20 5 1 2 0.05 1
72 1 20 5 0.4 2 0.05 1
80 3 20 5 1 2 0.05 1
81 3 20 5 1 2 0.05 1
82 3 20 5 0.4 2 0.05 1
90 5 15 5 1 1.5 0.1 1
100 8 8 5 0.75 1.5 0.15 0.8
110 9 8 5 0.25 1 0.02 0.5
120 6 1.5 4 1 1 0.05 1
121 6 1.5 4 1 1 0.05 1
122 6 1.5 4 1 1 0.05 1
130 10 0.5 4 1 1 0.02 0.5
140 16 0.05 1 1 1 0.001 1
150 9 2 2 0.15 1 0.05 1
151 9 10 5 0.15 1 0.1 1
152 7 1.5 4 0.15 1 0.05 1
153 10 0.5 4 0.15 1 0.02 0.5
160 11 10 5 1 1 0.1 1
170 11 10 5 1 1 0.1 1
180 11 1 5 1 1 0.02 0.5
190 13 20 0 0 0 0 0
200 16 0 0 0 0 0 0
201 16 0 0 0 0 0 0
202 16 0 0 0 0 0 0
210 0 0 0 0 0 0 0
220 15 0 0 0 0 0 0

ERA5. Inputs at the time of the satellite overpass are computed by linear interpolation
between the previous and posterior reanalysis timestep. Due to the low spatial resolution
of the air temperature and wind speed �elds (tens of kilometers) they are assumed to repre-
sent the surface conditions derived from conditions above the blending height (100 m above
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the surface) rather then the actual surface conditions. Therefore, air temperature at 100
m is calculated using the 2 m estimate, ECMWF surface geopotential, SRTM DEM and
lapse rate for moist air. Similarly, wind speed at 100 m is calculated using the ECMWF 10
m estimate together with surface roughness forecast [32]. Those 100 meter estimates are
then used as inputs into the land surface �ux models. AOT together with TCWV, surface
pressure, SRTM DEM elevation and solar zenith angle at the time of Sentinel-3 satellite
overpass were used to estimate the instantaneous shortwave irradiance on a horizontal
surface at the satellite overpass [76, 77].

1.2.4 Thermal data sharpening approaches

Two thermal data sharpening approaches were tested in this study: one based on ensemble
of decision trees and one based on ensemble of neural networks. The two approaches share
the same basic scheme (Fig. 1.1), data preparation and bias-reduction methods. Those
methods are based on Gao et al. [6] and have been previously applied by Guzinski and Nieto
[4] to sharpen thermal data to be used as input to evapotranspiration models. Each S3
scene is matched with an S2 scene acquired at most four days previously and the regression
model used for sharpening is derived speci�cally for each scene pair.

Figure 1.1: General thermal sharpening work�ow. Explanatory variables include both
multispectral band as well any other ancillary explanatory variable, such as elevation, land
cover type or exposure. Model could be any regression model, such as multivariate linear
regression or machine learning techniques

Brie�y, the atmospherically corrected Sentinel-2 optical data with a spatial resolution
of 20 m is resampled to match the pixel sampling of the SLSTR sensor (around 1 km
spatial resolution). Concurrently, the SRTM DEM is used to derive slope and aspect
maps which, together with S3 overpass time, are used to estimate the solar radiation
incident of a �at tilted surface. The DEM and the radiation maps are also resampled
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to the SLSTR resolution. A multivariate regression model is then trained with the three
resampled datasets used as predictors and the Trad used as the dependent variable. The
selection of training samples is performed automatically by estimating the coe�cient of
variation (CV) of all the high-resolution pixels falling within one low-resolution pixel and
selecting 80% of pixels with lowest CV. The regression model is based on bagging ensemble
[78] of either decision trees or neural networks. The decision trees are additionally modi�ed
such that all samples within a regression tree leaf node are �tted with a multivariate linear
model, as proposed by [6].

The regression models are trained on the whole S2 tile (100 km by 100 km) as well as
on subsets of 30 by 30 S3 pixels in a moving window fashion. Once they are trained they
are also applied on the whole scene and on each window. The bias between the predicted
high-resolution Trad pixels aggregated to the low-resolution and the original low-resolution
Trad is calculated and the outputs of the whole-scene and moving-window regressions are
combined based on a weight inversely proportional to the bias [6]. Finally, the predicted
Trad by the regression model is corrected by comparing the emitted longwave radiance of
the sharpened �ne Trad versus the original coarse Trad. A bias-corrected Trad is therefore
re-calculated by adding an o�set all �ne scale pixels falling within coarse scale pixel in order
to remove any residual bias. This is done to ensure the conservation of energy between the
two thermal images with di�erent spatial resolutions [6].

1.3 Results

The overall performance of the tested models using sharpened temperatures from Decision
Trees regressor (hereinafter Trad,DT ) is shown in Table 1.3. Likewise, overall errors from
Arti�cial Neural Network sharpened temperatures (Trad,NN ) are listed in Table 1.4. We
have �ltered all cases where estimated Rn ≤ 50 W m−2, assuming that noisy outputs
will be produced under low available energy, as well as those yielding unrealistic �uxes
during daytime (≤ −500 W m−2 and ≥ 1000 W m−2). After �ltering the data, more than
200 cases were available overall for the following analyses. However, it is worth noting
that METRIC yielded signi�cantly fewer valid retrievals. This issue might be due to the
fact that METRIC requires a contextual search of hot and cold pixels, and under cloudy
conditions (i.e. when few pixels are available within a scene) as well as in sites where there
is a lower range of soil moisture conditions and vegetation density, that search would not
result in a reliable endmember selection from the automatic search algorithm. All models
returned a similar performance regarding the estimation of Rn, with mean bias between -5
and 20 W m−2 and RMSE ranging between 46 and 55 W m−2. This similar behaviour is
explained by the fact that all models share the same approach and same inputs in modelling
net shortwave radiation, which is the component with larger magnitude of Rn. Likewise,
G showed similar behaviour as well, but in this case GMETRIC is computed di�erently as
it is a function of surface Rn [32, 31] as opposed to TSEB and ESVEP that, as two-source
models, G is computed from Rn,S [36, 44].

The main di�erences in model performance are therefore in the estimation of turbulent
�uxes (i.e. sensible and latent heat �uxes), and TSEB usually produced more accurate
estimates in terms of RMSE (≈ 75 Wm−2, 43% relative error, in H, and ≈ 90 Wm−2, 49%
relative error, in λE) and correlation between observed and predicted (> 0.7), compared
to METRIC and ESVEP, where RMSE are in all cases higher than 100 W m−2 and with
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Table 1.3: Error metrics for METRIC, TSEB-PT, disTSEB (TSEB-PT with �ux disag-
gregation) and ESVEP modelled �uxes using Decision Tree sharpened temperatures. N,
number of valid cases; Obs.; mean of observed values (W m−2); bias, mean di�erence be-
tween predicted and observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE,
Root Mean Square Error (W m−2); rRMSE, Relative RMSE (�); r, Pearson correlation
coe�cient (�); % points in plausible range from closure error; RDE, Range Di�erence Error
(W m−2)

variable model N Obs. bias MAE RMSE rRMSE r % points RDE

H

METRIC 242 171 15 95 146 0.854 0.286 39.7 119
TSEB-PT 309 176 -44 60 75 0.426 0.734 20.1 73
disTSEB 300 177 -36 58 73 0.413 0.728 21.8 69
ESVEP 259 166 67 137 207 1.246 0.413 21.5 171

λE

METRIC 229 199 9 103 130 0.654 0.334 37.6 106
TSEB-PT 304 180 36 70 88 0.491 0.770 39.1 75
disTSEB 296 180 42 72 92 0.510 0.766 35.1 80
ESVEP 219 193 -13 103 127 0.656 0.431 36.4 89

Rn

METRIC 250 456 -13 35 46 0.101 0.943 � �
TSEB-PT 331 441 12 38 51 0.116 0.919 � �
disTSEB 321 439 21 42 55 0.126 0.916 � �
ESVEP 322 440 5 38 50 0.114 0.918 � �

G

METRIC 244 86 -16 47 56 0.655 0.597 � �
TSEB-PT 325 83 20 43 55 0.661 0.571 � �
disTSEB 315 80 11 44 54 0.669 0.529 � �
ESVEP 317 84 26 48 62 0.734 0.485 � �
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lower correlation (< 0.5). Nevertheless, METRIC showed lower mean bias than the other
models (9 and 15 W m−2 respectively for λE and H).

Regardless on the model use, both sharpening methods yield similar results, with
Trad,DT showing slightly better metrics than Trad,NN . Therefore, in following analysis
only results for Trad,DT will be listed, while results regarding Trad,NN are included as
Supplementary Material.

Table 1.4: Error metrics for METRIC, TSEB-PT, disTSEB (TSEB-PT with �ux disag-
gregation), and ESVEP modelled �uxes using Arti�cial Neural Network sharpened tem-
peratures. N, number of valid cases; Obs.; mean of observed values (W m−2); bias, mean
di�erence between predicted and observed (W m−2); MAE, Mean Absolute Error (W
m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (�); r, Pearson
correlation coe�cient (�); % points in plausible range from closure error; RDE, Range
Di�erence Error (W m−2)

variable model N Obs. bias MAE RMSE rRMSE r % points RDE

H

METRIC 240 170 25 95 138 0.809 0.285 35.3 105
TSEB-PT 309 176 -45 61 76 0.430 0.728 19.7 73
disTSEB 300 177 -37 59 74 0.417 0.724 22.5 70
ESVEP 262 167 69 141 212 1.273 0.426 21.3 175

λE

METRIC 224 200 -1 101 131 0.656 0.348 33.3 101
TSEB-PT 304 180 37 69 88 0.491 0.769 37.7 75
disTSEB 296 180 42 72 92 0.510 0.765 33.7 81
ESVEP 222 194 -13 104 129 0.667 0.419 34.4 91

Rn

METRIC 250 456 -13 35 46 0.101 0.943 � �
TSEB-PT 331 441 12 39 51 0.116 0.919 � �
disTSEB 321 439 21 42 55 0.126 0.915 � �
ESVEP 324 441 6 39 50 0.114 0.919 � �

G

METRIC 244 86 -16 47 56 0.654 0.598 � �
TSEB-PT 325 83 20 44 55 0.664 0.566 � �
disTSEB 315 80 11 44 54 0.675 0.523 � �
ESVEP 319 84 26 48 61 0.729 0.495 � �

In order to evaluate the model sensitivity and uncertainty to di�erent vegetation types,
we have split the results of Table 1.3 into four main vegetation types, depending on
di�erences in aerodynamic roughness, horizontal homogeneity and/or seasonal dynam-
ics/senescence (i.e. croplands, grasslands, savannas and forests, Table 1.5). At croplands
and savannas, small di�erences are found between TSEB and METRIC, with moderate
errors between 80 and 100 W m −2 RMSE in λE and between 65 and 90 W m −2 in H,
but ESVEP returned larger errors (>120 W m −2 RMSE in λE and errors up to 276 W
m −2 in the case of RMSE in H in savannas). Despite of the relative similar performance
between METRIC and TSEB, METRIC yielded fewer valid retrievals and still showed a
lower agreement between the observed and the predicted when estimating H (r=0.27 in
METRIC vs. 0.62 in TSEB). As for the grasslands, TSEB outperformed the other two
models, both in terms of RMSE (64 W m −2 in H and 86 W m −2 in λE) and correlation
(0.81 in H and 0.76 in λE). Finally very few valid cases are available to evaluate the forest
sites and hence the results are not very conclusive, with METRIC outperforming the other
models but producing fewer valid retrievals.
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Table 1.5: Error dependence on land cover for METRIC, TSEB-PT, disTSEB (TSEB-
PT with �ux disaggregation) and ESVEP modelled �uxes using Decision Trees sharpened
temperatures. N, number of valid cases; Obs.; mean of observed values (W m−2); bias,
mean di�erence between predicted and observed (W m−2); MAE, Mean Absolute Error
(W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (�); r,
Pearson correlation coe�cient (�); % points in plausible range from closure error; RDE,
Range Di�erence Error (W m−2)

variable land cover model N Obs. bias MAE RMSE rRMSE r % points RDE

H

cropland

METRIC 79 135 48 77 91 0.672 0.271 57.7 39
TSEB-PT 105 154 -55 66 83 0.542 0.617 20.2 81
disTSEB 104 154 -48 64 81 0.524 0.593 18.4 77
ESVEP 86 141 81 123 191 1.348 0.418 28.2 143

grassland

METRIC 100 195 -16 117 170 0.870 0.221 24.5 160
TSEB-PT 101 194 -26 51 64 0.328 0.814 20.0 59
disTSEB 93 198 -25 51 65 0.328 0.809 20.7 60
ESVEP 91 185 8 113 161 0.869 0.428 16.3 134

savanna

METRIC 52 185 -18 52 67 0.362 0.777 39.2 56
TSEB-PT 90 186 -47 57 69 0.371 0.779 18.2 67
disTSEB 90 186 -30 54 65 0.352 0.762 26.0 59
ESVEP 71 175 139 187 276 1.579 0.476 18.8 243

forest

METRIC 11 140 221 222 354 2.535 0.528 45.5 237
TSEB-PT 13 151 -72 94 115 0.763 0.502 30.8 113
disTSEB 13 151 -62 88 107 0.706 0.566 30.8 104
ESVEP 11 147 -12 116 138 0.941 0.480 27.3 106

λE

cropland

METRIC 75 262 -46 85 104 0.397 0.614 41.9 45
TSEB-PT 101 239 31 63 80 0.333 0.795 36.0 71
disTSEB 100 239 39 66 85 0.355 0.774 35.4 78
ESVEP 75 256 -56 96 122 0.477 0.462 37.8 72

grassland

METRIC 94 130 99 132 163 1.254 0.306 22.7 161
TSEB-PT 100 129 47 71 86 0.671 0.765 28.7 81
disTSEB 93 126 57 77 93 0.738 0.756 19.5 89
ESVEP 84 133 41 102 120 0.902 0.417 23.8 103

savanna

METRIC 52 221 -65 82 98 0.442 0.352 54.9 35
TSEB-PT 90 158 25 73 94 0.594 0.493 57.1 59
disTSEB 90 158 26 70 92 0.583 0.533 53.2 61
ESVEP 49 189 -45 107 136 0.719 0.144 56.8 72

forest

METRIC 8 269 -50 68 83 0.310 0.934 50.0 29
TSEB-PT 13 277 71 95 125 0.450 0.969 30.8 123
disTSEB 13 277 76 100 130 0.467 0.972 30.8 128
ESVEP 11 254 19 133 166 0.654 0.853 36.4 131

Continued on next page
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Table 1.5 � Continued from previous page

variable land cover model N Obs. bias MAE RMSE rRMSE r % points RDE

Rn

cropland

METRIC 81 434 6 26 36 0.082 0.966 � �
TSEB-PT 124 429 23 32 41 0.096 0.961 � �
disTSEB 122 428 33 42 51 0.119 0.952 � �
ESVEP 120 430 9 33 43 0.099 0.941 � �

grassland

METRIC 104 470 -9 34 49 0.105 0.897 � �
TSEB-PT 104 470 0 35 49 0.104 0.897 � �
disTSEB 96 467 5 37 52 0.110 0.880 � �
ESVEP 102 469 -2 33 47 0.101 0.903 � �

savanna

METRIC 52 462 -53 53 57 0.123 0.990 � �
TSEB-PT 90 421 12 54 66 0.158 0.822 � �
disTSEB 90 421 22 51 67 0.159 0.849 � �
ESVEP 88 421 7 54 64 0.152 0.834 � �

forest

METRIC 13 459 4 20 27 0.060 0.994 � �
TSEB-PT 13 459 7 21 27 0.058 0.995 � �
disTSEB 13 459 10 22 28 0.061 0.995 � �
ESVEP 12 448 13 20 26 0.058 0.996 � �

G

cropland

METRIC 81 40 22 41 50 1.264 0.271 � �
TSEB-PT 124 41 60 67 75 1.843 0.281 � �
disTSEB 122 39 51 59 66 1.690 0.295 � �
ESVEP 120 41 69 74 87 2.124 0.265 � �

grassland

METRIC 104 143 -64 66 72 0.503 0.811 � �
TSEB-PT 104 143 -25 34 43 0.300 0.781 � �
disTSEB 96 141 -31 38 51 0.361 0.715 � �
ESVEP 102 145 -25 36 43 0.298 0.763 � �

savanna

METRIC 52 57 16 20 23 0.415 0.971 � �
TSEB-PT 90 77 18 24 31 0.395 0.708 � �
disTSEB 90 77 -1 30 37 0.475 0.433 � �
ESVEP 88 78 26 29 34 0.435 0.778 � �

forest

METRIC 7 -2 18 18 27 -11.544 0.866 � �
TSEB-PT 7 -2 19 19 23 -10.063 0.789 � �
disTSEB 7 -2 13 13 16 -6.932 0.794 � �
ESVEP 7 -2 15 15 18 -7.762 0.784 � �

The agriculture class was further split into herbaceous and woody types, with results
shown in Table 1.6. The former sub-class represents crops such as corn, soybean or wheat
while the latter represents olive groves and vineyards. TSEB model produces the most
consistent results for both types of crops, although the RMSE of λE in herbaceous crops
(70 W m−2) is signi�cantly lower then in woody crops (84 W m−2). ESVEP is very clearly
performing better in herbaceous crops, while METRIC obtains better results in woody
crops.

Similarly, Table 1.7 lists the model performance depending on whether sites are under
Mediterranean or semi-arid climate (i.e. water limited sites), and sites under temperate
climate (i.e. energy limited sites). First of all it is worth noting that due to cloud coverage
conditions, more valid cases are obtained over semi-arid conditions than in temperate areas.
TSEB model showed similar range of errors in both climatic conditions, with RMSE in λE
at 90 W m−2 and 84 W m−2 for semi-arid and temperate conditions, and correspondingly
73 and 81 W m−2 for H. ESVEP and METRIC yielded more varying results between
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climates, with METRIC producing more accurate estimates of λE but less accurate in H,
over temperate climates than in semi-arid conditions. On the other hand, ESVEP showed
overall better performance over temperate than in semi-arid climates.

Table 1.6: Crop type dependent errors for METRIC, TSEB and ESVEP modelled �uxes
using Decision Tree sharpened temperatures. N, number of valid cases; Obs.; mean of
observed values (W m−2); bias, mean di�erence between predicted and observed (W m−2);
MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE,
Relative RMSE (�); r, Pearson correlation coe�cient (�); % points in plausible range from
closure error; RDE, Range Di�erence Error (W m−2)

variable crop type model N Obs. bias MAE RMSE rRMSE r % points RDE

H

herbaceous

METRIC 39 123 71 80 93 0.759 0.571 31 20
TSEB-PT 39 123 -54 63 82 0.667 0.479 8 81
disTSEB 38 123 -52 60 79 0.646 0.550 8 78
ESVEP 37 122 19 57 76 0.625 0.497 19 45

woody

METRIC 40 146 25 73 88 0.601 0.014 14 51
TSEB-PT 66 172 -56 68 84 0.490 0.620 13 81
disTSEB 66 172 -46 66 81 0.473 0.569 11 76
ESVEP 49 156 127 173 244 1.563 0.384 5 186

λE

herbaceous

METRIC 35 246 -83 98 119 0.482 0.520 22 27
TSEB-PT 35 246 -2 56 70 0.283 0.711 21 51
disTSEB 34 246 1 55 70 0.284 0.729 20 55
ESVEP 34 245 -54 69 92 0.375 0.619 22 26

woody

METRIC 40 275 -14 75 89 0.322 0.772 9 57
TSEB-PT 66 235 49 66 84 0.359 0.845 15 80
disTSEB 66 235 58 72 92 0.390 0.823 15 88
ESVEP 41 264 -58 119 142 0.538 0.404 6 95

Rn

herbaceous

METRIC 41 413 -7 26 36 0.087 0.967 � �
TSEB-PT 41 413 0 25 34 0.083 0.969 � �
disTSEB 39 408 4 26 36 0.088 0.968 � �
ESVEP 40 411 6 25 33 0.081 0.972 � �

woody

METRIC 40 455 20 25 35 0.077 0.974 � �
TSEB-PT 83 437 34 36 44 0.101 0.968 � �
disTSEB 83 437 46 49 57 0.129 0.959 � �
ESVEP 80 439 10 37 47 0.106 0.915 � �

G

herbaceous

METRIC 41 45 2 39 47 1.026 0.487 � �
TSEB-PT 41 45 50 62 73 1.608 0.316 � �
disTSEB 39 42 45 58 68 1.629 0.311 � �
ESVEP 40 46 35 49 57 1.236 0.548 � �

woody

METRIC 40 34 42 44 53 1.586 0.335 � �
TSEB-PT 83 38 66 69 75 1.980 0.447 � �
disTSEB 83 38 54 60 66 1.720 0.447 � �
ESVEP 80 38 86 87 99 2.569 0.451 � �
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Table 1.7: Climate dependence of errors for METRIC, TSEB and ESVEP modelled �uxes
using Decision Trees sharpened temperatures. N, number of valid cases; Obs.; mean of
observed values (W m−2); bias, mean di�erence between predicted and observed (W m−2);
MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE,
Relative RMSE (�); r, Pearson correlation coe�cient (�); % points in plausible range from
closure error; RDE, Range Di�erence Error (W m−2)

variable climate model N Obs. bias MAE RMSE rRMSE r % points RDE

H

semi-arid

METRIC 177 192 -16 90 136 0.710 0.326 27.2 126
TSEB-PT 242 193 -44 60 73 0.380 0.744 18.0 70
disTSEB 234 194 -35 59 72 0.370 0.728 20.1 67
ESVEP 198 182 80 157 231 1.268 0.369 11.9 194

temperate

METRIC 65 113 101 107 169 1.496 0.486 72.3 100
TSEB-PT 67 116 -45 59 81 0.700 0.472 26.9 79
disTSEB 66 116 -42 56 77 0.668 0.539 27.3 76
ESVEP 61 114 25 71 93 0.817 0.458 50.8 58

λE

semi-arid

METRIC 171 180 37 108 137 0.760 0.298 28.8 122
TSEB-PT 241 160 41 72 90 0.560 0.745 34.8 75
disTSEB 234 160 47 75 93 0.583 0.736 32.2 81
ESVEP 161 174 0 109 132 0.757 0.352 27.2 97

temperate

METRIC 58 254 -72 88 107 0.422 0.747 62.1 29
TSEB-PT 63 257 16 61 84 0.325 0.866 54.0 74
disTSEB 62 257 24 63 87 0.338 0.875 45.2 80
ESVEP 58 246 -47 85 111 0.452 0.712 60.3 62

Rn

semi-arid

METRIC 180 473 -19 38 49 0.103 0.921 � �
TSEB-PT 261 449 13 42 54 0.121 0.881 � �
disTSEB 253 447 22 46 59 0.131 0.876 � �
ESVEP 256 450 4 42 54 0.119 0.877 � �

temperate

METRIC 70 411 3 27 38 0.093 0.973 � �
TSEB-PT 70 411 9 26 38 0.092 0.975 � �
disTSEB 68 409 14 29 40 0.098 0.975 � �
ESVEP 66 405 11 24 34 0.084 0.981 � �

G

semi-arid

METRIC 180 104 -22 52 61 0.591 0.485 � �
TSEB-PT 261 94 16 42 53 0.565 0.531 � �
disTSEB 253 92 5 44 53 0.581 0.493 � �
ESVEP 256 95 25 50 64 0.676 0.343 � �

temperate

METRIC 64 37 3 31 39 1.073 0.533 � �
TSEB-PT 64 37 38 48 60 1.645 0.426 � �
disTSEB 62 34 32 43 56 1.633 0.406 � �
ESVEP 61 37 30 40 48 1.318 0.600 � �
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1.4 Discussions

1.4.1 ET model intercomparison

Overall results listed in Table 1.3 or Table 1.4 show that TSEB produced more robust
estimates of both sensible and latent heat �uxes, with lower error around 90 W m −2

and larger correlation coe�cient, while at the same time it returns more valid cases than
the other two models, METRIC and ESVEP. Those errors are within the expected and
reported errors in literature, e.g. Kalma et al. [3] showed errors in λE ranging between
24 and 105 W m −2 for a wide range of models, Chirouze et al. [58] reported errors for
TSEB > 100 W m −2 in a semi-arid area of Mexico, 50 W m −2 in Tang et al. [35], or Choi
et al. [79] found TSEB and METRIC produced similar errors of 54 W m −2 in a watershed
in Iowa, US. However it is worth noting that most of the reported errors in these studies
[79, 58, 80, 35] used actual surface temperature at high spatial resolution (e.g. Landsat
or ASTER), whereas in this study we used low resolution temperature sharpened at high
spatial resolution, which provides an additional input uncertainty to the models. For that
reason, section 1.4.2 is dedicated to this issue in depth.

TSEB was developed trying to solve some of the issues in sparse vegetation and semi-
arid conditions previously raised by less complex models [36], and therefore it adapts better
to a wider range of climatic and vegetation conditions [2] as it was shown in Tables 1.5 and
1.7. METRIC, on the other hand, was primarily designed for standard crops and requires
concomitant presence of stressed and well watered-full vegetation conditions within the
scene itself. Those cases in which, either due to the increased presence of clouds (i.e.
fewer available pixels in the scene) or in regions where these hot and cold pixels cannot
be simultaneously found, METRIC would produce more uncertain retrieval, as already
pointed by Choi et al. [79] and Tang et al. [35] in humid or sub-humid areas, or even
could not produce any valid data. That is the case for instance in the semi-arid sites, in
particular Dahra and Taus (see Figs 1.8, 1.9, 1.22, or 1.23 in section 1.5), where no valid
retrieval was obtained whatsoever.

Finally, it is worth pointing out that even in situ EC measurements are prone to
uncertainty as it is con�rmed for instance by the usual energy imbalance in those systems.
Particularly is is found a larger disagreement between observed and predicted net radiation
in Dahra (Figs. 1.8 and 1.9), which a�ects specially the error metrics in Rn for TSEB and
ESVEP compared to METRIC (as the latter model as it was commented before did not
produce any valid case in this site to validate with). We hypothesise in two possible reasons,
one is that our modelled irradiance, with depends on TCWV and aerosol optical thickness,
are more noisy than the other sites, due to unaccounted dust aerosols in that site place over
the Sahel. The second issue might be the actual Rn measurements as in this site only a
NR-lite (Kipp & Zonen, Netherlands) is available to measure global Rn that might be less
accurate than the radiometers in the other sites, which are measuring the four components
of radiation. On the other hand, Harvard Forest site lacks in situ G measurements, which
e�ects on the energy balance closure correction. This issue together with the fact that very
few cases are available in forests (Table 1.5), leads to avoiding strong conclusions regarding
the performance of the models in forests areas.
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1.4.2 Sharpening and disaggregation

Comparison of the two sharpening methods evaluated (Decision Trees and Arti�cial Neural
Network) leads to very similar results found between methods for all models tested, with
very slightly better performance in Trad,DT (Table 1.3) compared to Trad,NN (Table 1.4).
Furthermore, spatial patterns of sharpened temperature are very similar (see example
comparison image in Fig 1.2). Therefore in the future, an assessment between sharpening
methods needs to be carried out comparing the agreement in spatial patterns with actual
surface temperature, for instance using concomitant Landsat Trad imagery.

(a) Decision Tree (b) Arti�cial Neural Network

Figure 1.2: Spatial patterns comparison between both sharpened temperatures. Images
correspond to the Walnut Gulch site on September 27th, 2017. The black dot shows the
location of the �ux tower

As it was previously mentioned thermal sharpening relates empirically or semi-empirically
coarse resolution surface temperature with �ne resolution multispectral and other ancil-
lary data. This technique could be a sound alternative to the lack high resolution thermal
imagery for operational activities. However, previous studies in thermal sharpening have
already reported some uncertainties when compared to actual Trad temperatures, with er-
rors ranging up to 3.5 K [12, 5, 6, 7, 15, 13]. Therefore, for some applications requiring
ET estimates at higher accuracy (i.e. precision agriculture), sharpening would not be con-
sidered as a substitute of Trad but complementary to it, such as in the fusion approach by
Knipper et al. [81].

In order to reduce �ux retrieval errors with sharpened Trad retrievals, we also tested a
�ux disaggregation method [8, 23]. Our results listed in Tables 1.3-1.7 show that disTSEB
model, i.e. coarse S3 TSEB �uxes disaggregated with �ne resolution sharpened Trad, did
not yield any improvement to the TSEB-PT model, i.e. running TSEB directly on the
sharpened Trad imagery. However, previous studies have shown the robustness of this
approach to overcome limitations on the likely less reliable �ne resolution Trad images
[82, 81, 4]. Furthermore, coarse input data must be produced beforehand for thermal
sharpening and hence it is readily available for running the models at coarse resolution,
which indeed is computationally inexpensive given the much lower number of pixels within
a scene. Therefore, �ux disaggregation would still be recommended when running TSEB
with sharpened temperatures.

On the hand, the fact that coarse resolution Trad image could be combined with �ne
resolution images on di�erent days, with 4 days o�set set to maximum corresponding to
the nominal Sentinel 2 A & B combined overpass, might lead to additional uncertainties
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when sharpening the temperature. This is caused by the fact that some changes in either
in land cover properties, (e.g. vegetation growth, harvests, �res) or moisture conditions
(e.g. rainfall or irrigation) might happen between the Sentinel 2 and 3 acquisitions. Fig.
1.3 shows how RMSE tends to increase for sensible heat �ux with increasing days o�set
between S2 and S3 overpass. In this analysis H is plotted only since it is the energy
component that is directly related to Trad, and hence more prone to errors in sharpening.
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Figure 1.3: Root Mean Squared Error for sensible heat �ux depending on o�set days
between a Sentinel-3 Trad image and the �ne-scale Sentinel-2 multispectral image. RMSE
computed for all sites together

Finally, some studies have reported larger errors than in this study, but they were
using coarser resolution imagery [43]. This is probably due to the scale mismatch between
the coarse pixel estimate and the measured by EC towers. However those di�erences
are reduced when comparing �ux estimates with measurements made at larger scale, for
instance with Large Aperture Scintillometry Tang et al. [35] found errors using MODIS
of 50 W m−2. Therefore, even sharpened Trad being more prone to errors than actual
high-resolution Trad, it has proven to be a good alternative to downscaling �uxes for model
validation [4].

1.4.3 E�ects of ancillary inputs

Ancillary data is required to characterise the canopy structure, since it e�ects both the ra-
diation transmission through the canopy [53], and hence albedo and radiation partitioning,
as well as the surface aerodynamic properties [72]. In this study we have used a static land
cover map at global scale to assign some standard values to each land cover type (Table
1.2). However, the large di�erence in spatial resolution between the S2 data and CCI map
can lead to visible artefacts in the output �uxes when modelled at 20 m resolution, espe-
cially on the edges of two classes with di�erent vegetation properties (e.g. croplands and
forests). However, those spatial artefacts seems not to have any in�uence in the validation
results. Nevertheless, some discrepancies were found between the land cover type �agged
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by the map and the actual coverage at the study site and around. In Majadas de Tiétar,
CCI-LC �agged the site as cropland (CCI-LC=11), thus hc,MAX = 0.5 m, fc = 1 and
lw = 0.02 m, but actually this site is a savanna with 8 m tress at 20 % coverage (CCI-
LC=30). On the other hand the prescribed values that were assigned in Table 1.2 are very
general, as they- were trying to �t a global-based land cover legend. Therefore they can
signi�cantly deviate from the site's actual values. Indeed, all croplands were assumed that
they are not clumped (fc = 1) although row crops, like the vineyard in Borden, or orchards
like the olive grove in Taous have very di�erent canopy structure compared to a standard
crop. Therefore, it could be expected a signi�cant improvement if a more area-speci�c
surface characteristics parametrizing was used, either using some ancillary remote sensing
like SAR imagery or LiDAR or a regional/local oriented land cover classi�cation.

To conclude, atmospheric forcing from numerical weather prediction models might add
some uncertainty to the ET model compared to using local meteorological data, specially
for precision agriculture where access to local agrometeorological stations is possible. This
issue could be more evident in near-real=time applications as in that case the requirement
for using forecast or analysis data, instead of the ensemble mean reanalisys data that was
used in this study, could lead to increased uncertainties.

1.5 Conclusions

This study evaluated three thermal-based remote sensing methods (METRIC, ESVEP
and TSEB) and two thermal sharpening methods (Arti�cial Neural Networks and Deci-
sion Trees) in order to produce operational estimates of water and energy �uxes using
Sentinel data for the whole Globe. Regardless of the sharpening method, TSEB produced
overall the most accurate estimates in terms of sensible heat and latent heat (i.e. evapo-
transpiration) �uxes, being robust in di�erent land covers and climates. Despite of TSEB
being the model with the largest demand amount of input data, this study proposed several
approaches to retrieve some on the inputs, with special focus on exploiting the spectral
capabilities of Sentinel-2, in particular with bands in the red edge region that is sensitive
to leaf pigments. A simple empirical approach relating leaf bihemispherical re�ectance and
transmittance with the leaf biochemical properties, which can be derived with the ESA's
o�-the-shelf open-source SNAP software, resulted in accurate estimates of net radiation.
More importantly, due to the larger uncertainty of TSEB models over senescent vegetation,
we derived a method to obtain both total LAI and its green fraction based on [67] FA-
PAR/FIPAR relationship. Nevertheless, more research is needed to systematically derive
other vegetation properties such as canopy height/aerodynamic roughness or vegetation
clumping.

Suplementary material
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Table 1.8: Error dependence on land cover for METRIC, TSEB and ESVEP modelled
�uxes using Arti�cial Neural Network sharpened temperatures. N, number of valid cases;
Obs.; mean of observed values (W m−2); bias, mean di�erence between predicted and
observed (W m−2); MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square
Error (W m−2); rRMSE, Relative RMSE (�); r, Pearson correlation coe�cient (�); %
points in plausible range from closure error; RDE, Range Di�erence Error (W m−2)

variable land cover model N Obs. bias MAE RMSE rRMSE r % points RDE

H

cropland

METRIC 79 135 47 81 101 0.752 0.133 51.3 52
TSEB-PT 105 154 -56 68 85 0.552 0.597 20.2 82
disTSEB 104 154 -50 65 82 0.532 0.581 19.4 78
ESVEP 86 143 86 130 199 1.390 0.453 28.2 151

grassland

METRIC 100 194 20 111 161 0.828 0.240 25.5 143
TSEB-PT 101 194 -27 51 64 0.330 0.813 20.0 59
disTSEB 93 198 -25 52 66 0.332 0.807 21.8 61
ESVEP 92 184 4 111 158 0.860 0.426 17.2 133

savanna

METRIC 52 185 -30 59 77 0.415 0.737 31.4 68
TSEB-PT 90 186 -48 57 69 0.374 0.775 16.9 67
disTSEB 90 186 -30 54 65 0.352 0.761 26.0 59
ESVEP 73 175 144 194 283 1.617 0.497 18.2 248

forest

METRIC 9 121 193 248 304 2.512 0.272 22.2 142
TSEB-PT 13 151 -71 95 116 0.765 0.488 30.8 113
disTSEB 13 151 -62 88 107 0.706 0.555 30.8 103
ESVEP 11 147 -10 119 143 0.975 0.478 18.2 108

λE

cropland

METRIC 75 262 -44 88 112 0.429 0.533 37.8 57
TSEB-PT 101 239 32 62 79 0.332 0.790 37.0 71
disTSEB 100 239 39 65 85 0.354 0.770 31.3 78
ESVEP 76 253 -62 104 132 0.520 0.419 34.7 80

grassland

METRIC 91 133 71 118 152 1.145 0.326 17.6 144
TSEB-PT 100 129 48 71 87 0.674 0.765 25.5 82
disTSEB 93 126 57 77 94 0.744 0.754 20.7 90
ESVEP 86 135 43 101 118 0.870 0.479 22.0 103

savanna

METRIC 52 221 -53 77 94 0.428 0.335 54.9 38
TSEB-PT 90 158 25 72 93 0.593 0.497 54.5 59
disTSEB 90 158 26 69 92 0.581 0.536 51.9 60
ESVEP 49 190 -40 103 133 0.700 0.119 56.8 71

forest

METRIC 6 274 -98 205 243 0.884 0.577 16.7 133
TSEB-PT 13 277 70 96 125 0.451 0.969 30.8 123
disTSEB 13 277 75 100 130 0.467 0.970 30.8 127
ESVEP 11 254 17 137 171 0.675 0.841 36.4 134

Continued on next page
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Table 1.8 � Continued from previous page

variable land cover model N Obs. bias MAE RMSE rRMSE r % points RDE

Rn

cropland

METRIC 81 434 7 26 35 0.082 0.967 � �
TSEB-PT 124 429 24 33 42 0.097 0.961 � �
disTSEB 122 428 34 42 51 0.120 0.953 � �
ESVEP 121 431 12 33 42 0.097 0.947 � �

grassland

METRIC 104 470 -9 34 49 0.104 0.898 � �
TSEB-PT 104 470 0 34 49 0.104 0.898 � �
disTSEB 96 467 5 37 51 0.110 0.881 � �
ESVEP 102 469 -1 33 47 0.100 0.904 � �

savanna

METRIC 52 462 -54 54 58 0.125 0.990 � �
TSEB-PT 90 421 11 54 66 0.157 0.823 � �
disTSEB 90 421 21 52 67 0.158 0.847 � �
ESVEP 89 420 4 55 64 0.153 0.829 � �

forest

METRIC 13 459 4 20 27 0.059 0.994 � �
TSEB-PT 13 459 7 20 26 0.057 0.995 � �
disTSEB 13 459 10 22 28 0.061 0.995 � �
ESVEP 12 448 13 20 26 0.058 0.996 � �

G

cropland

METRIC 81 40 22 41 50 1.255 0.275 � �
TSEB-PT 124 41 61 67 75 1.857 0.278 � �
disTSEB 122 39 52 60 67 1.707 0.299 � �
ESVEP 121 41 68 73 86 2.097 0.273 � �

grassland

METRIC 104 143 -64 66 72 0.504 0.810 � �
TSEB-PT 104 143 -25 34 43 0.300 0.782 � �
disTSEB 96 141 -31 39 51 0.363 0.715 � �
ESVEP 102 145 -25 36 43 0.297 0.763 � �

savanna

METRIC 52 57 16 20 24 0.417 0.971 � �
TSEB-PT 90 77 18 23 30 0.392 0.706 � �
disTSEB 90 77 -1 30 37 0.476 0.436 � �
ESVEP 89 78 26 29 34 0.443 0.775 � �

forest

METRIC 7 -2 18 18 27 -11.557 0.865 � �
TSEB-PT 7 -2 19 19 23 -10.016 0.799 � �
disTSEB 7 -2 12 12 16 -6.761 0.801 � �
ESVEP 7 -2 15 15 18 -7.710 0.795 � �
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Table 1.9: Crop type dependent errors for METRIC, TSEB and ESVEP modelled �uxes
using Arti�cial Neural Network sharpened temperatures. N, number of valid cases; Obs.;
mean of observed values (W m−2); bias, mean di�erence between predicted and observed
(W m−2); MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W
m−2); rRMSE, Relative RMSE (�); r, Pearson correlation coe�cient (�); % points in
plausible range from closure error; RDE, Range Di�erence Error (W m−2)

variable crop type model N Obs. bias MAE RMSE rRMSE r % points RDE

H

herbaceous

METRIC 39 123 65 82 97 0.789 0.439 29 30
TSEB-PT 39 123 -56 65 84 0.683 0.436 7 83
disTSEB 38 123 -54 61 81 0.660 0.524 8 80
ESVEP 36 122 16 61 80 0.657 0.454 19 52

woody

METRIC 40 146 28 80 105 0.720 -0.121 11 67
TSEB-PT 66 172 -56 70 85 0.496 0.596 14 82
disTSEB 66 172 -47 68 82 0.479 0.554 12 77
ESVEP 50 159 136 180 252 1.591 0.440 5 193

λE

herbaceous

METRIC 35 246 -74 94 117 0.475 0.514 19 31
TSEB-PT 35 246 0 56 70 0.283 0.712 20 52
disTSEB 34 246 4 55 71 0.287 0.727 19 57
ESVEP 33 243 -52 70 94 0.386 0.581 20 32

woody

METRIC 40 275 -18 82 108 0.392 0.601 9 73
TSEB-PT 66 235 49 65 84 0.358 0.840 17 80
disTSEB 66 235 58 71 91 0.387 0.819 12 87
ESVEP 43 261 -71 130 154 0.593 0.368 6 103

Rn

herbaceous

METRIC 41 413 -7 26 36 0.087 0.968 � �
TSEB-PT 41 413 0 25 34 0.083 0.970 � �
disTSEB 39 408 5 26 36 0.087 0.968 � �
ESVEP 40 411 6 25 33 0.081 0.973 � �

woody

METRIC 40 455 21 26 35 0.077 0.977 � �
TSEB-PT 83 437 35 38 45 0.103 0.969 � �
disTSEB 83 437 47 50 57 0.131 0.961 � �
ESVEP 81 440 15 38 45 0.103 0.927 � �

G

herbaceous

METRIC 41 45 2 39 46 1.024 0.490 � �
TSEB-PT 41 45 50 62 73 1.614 0.312 � �
disTSEB 39 42 46 58 69 1.634 0.316 � �
ESVEP 40 46 35 49 57 1.240 0.551 � �

woody

METRIC 40 34 42 44 53 1.570 0.339 � �
TSEB-PT 83 38 66 70 76 2.000 0.448 � �
disTSEB 83 38 55 61 66 1.744 0.453 � �
ESVEP 81 38 85 85 97 2.527 0.455 � �
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Table 1.10: Climate dependence of errors for METRIC, TSEB and ESVEP modelled �uxes
using Arti�cial Neural Network sharpened temperatures. N, number of valid cases; Obs.;
mean of observed values (W m−2); bias, mean di�erence between predicted and observed
(W m−2); MAE, Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W
m−2); rRMSE, Relative RMSE (�); r, Pearson correlation coe�cient (�); % points in
plausible range from closure error; RDE, Range Di�erence Error (W m−2)

variable climate model N Obs. bias MAE RMSE rRMSE r % points RDE

H

semi-arid

METRIC 177 191 2 91 135 0.704 0.315 23.7 118
TSEB-PT 242 193 -44 61 74 0.383 0.737 18.0 71
disTSEB 234 194 -35 59 72 0.373 0.723 21.0 68
ESVEP 201 183 84 161 236 1.294 0.386 12.8 199

temperate

METRIC 63 109 88 106 145 1.324 0.340 66.7 60
TSEB-PT 67 116 -46 60 82 0.711 0.449 25.4 81
disTSEB 66 116 -43 57 79 0.677 0.523 27.3 77
ESVEP 61 114 23 74 96 0.843 0.440 47.5 62

λE

semi-arid

METRIC 168 182 22 101 132 0.725 0.343 28.1 113
TSEB-PT 241 160 42 72 90 0.560 0.743 34.4 75
disTSEB 234 160 47 74 93 0.583 0.733 30.8 81
ESVEP 164 174 -2 110 134 0.770 0.321 27.3 99

temperate

METRIC 56 254 -70 100 129 0.508 0.597 48.2 52
TSEB-PT 63 257 18 61 83 0.324 0.867 49.2 74
disTSEB 62 257 25 63 87 0.337 0.875 43.5 80
ESVEP 58 248 -42 86 113 0.458 0.713 53.4 66

Rn

semi-arid

METRIC 180 473 -19 38 49 0.103 0.920 � �
TSEB-PT 261 449 13 42 54 0.121 0.881 � �
disTSEB 253 447 22 46 59 0.132 0.875 � �
ESVEP 258 450 4 42 54 0.119 0.879 � �

temperate

METRIC 70 411 4 27 38 0.091 0.974 � �
TSEB-PT 70 411 9 26 37 0.091 0.976 � �
disTSEB 68 409 14 29 40 0.098 0.975 � �
ESVEP 66 405 11 24 34 0.084 0.981 � �

G

semi-arid

METRIC 180 104 -23 52 61 0.590 0.487 � �
TSEB-PT 261 94 16 42 53 0.568 0.525 � �
disTSEB 253 92 6 44 54 0.586 0.484 � �
ESVEP 258 95 24 49 63 0.671 0.361 � �

temperate

METRIC 64 37 3 31 39 1.072 0.534 � �
TSEB-PT 64 37 38 48 61 1.651 0.423 � �
disTSEB 62 34 32 44 56 1.641 0.407 � �
ESVEP 61 37 30 40 49 1.324 0.602 � �
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Figure 1.4: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Borden
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Figure 1.5: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Borden
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Figure 1.6: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Choptank
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Figure 1.7: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Choptank
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Figure 1.8: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Dahra
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Figure 1.9: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Dahra
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Figure 1.10: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Grillenburg
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Figure 1.11: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Grillenburg
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Figure 1.12: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Harvard
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Figure 1.13: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Harvard
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Figure 1.14: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Hyltemossa
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Figure 1.15: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Hyltemossa
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Figure 1.16: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Klingenberg
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Figure 1.17: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Klingenberg
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Figure 1.18: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Majadas
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Figure 1.19: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Majadas de Tiétar
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Figure 1.20: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Selhausen
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Figure 1.21: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Selhausen
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Figure 1.22: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Taous
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Figure 1.23: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Taous
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(d) ESVEP

Figure 1.24: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Decision Trees for Walnut Gulch
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Figure 1.25: Model scatterplot of predicted vs. EC observed using sharpened Trad with
Arti�cial Neural Network for Walnut Gulch
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Chapter 2

Model benchmarking and selection

At the beginning of the project, three evapotranspiration (ET) models and two land surface
temperature (LST) sharpening methods were selected for prototyping and benchmarking,
after a literature review [1]. The purpose was to �nd an optimal combination for estimating
high-resolution (10 - 20 m) ET using Sentinel-2 (S2) and Sentinel-3 (S3) observations. This
combination will be implemented as an open-source software and made freely available to
the Earth Observation (EO) community in the second phase of SEN-ET project. The three
selected ET models were: METRIC [32, 57], TSEB-PT [36, 50] and ESVEP [44]. Both of
the sharpening approaches used the Data Mining Sharpener (DMS) [6, 4] framework with
Bagging ensemble of either Neural Networks (NN) or Decision Trees (DT). The prototypes
of all the selected ET models and sharpening methods were implemented in Python and are
available in GitHub: https://github.com/hectornieto/pyMETRIC, https://github.com/hectornieto/pyTSEB,
https://github.com/dhi-gras/py-esvep and https://github.com/radosuav/pyDMS.

The high-resolution �uxes used for the benchmarking were produced using only publicly
available and global data sources. The low resolution LST was estimated using S3 SLSTR
L1 data and the approach of [70], since SLSTR L2 data was not available for the whole
of the study period. The LST was then sharpened to S2 resolution using atmospherically
corrected 10m and 20 m S2 bands, SRTM digital elevation model and solar illumination
conditions, before being used as an input to the ET models. S2 data were also used to
derive plant biophysical parameters, such as leaf area index (LAI) or albedo, predominantly
using SNAP software functionality. Meteorological inputs were obtained from European
Centre for Medium Range Weather Forecast (ECMWF) ERA-5 reanalysis dataset, and
ancillary inputs (e.g. vegetation height) were based on ESA Climate Change Initiative
land-cover map for 2015 and a look-up table.

2.1 Benchmarking criteria

The selection of the optimal model was based on 6 evaluation criteria.

1. Accuracy - evaluate models on their performance when run in "operational mode"
(standard setting) and in "research mode".

This involves looking at overall model accuracy across all validation sites when run
with globally available datasets (i.e. operational mode). Special focus should be
placed on accuracy in the SEN-ET focus application (i.e. agriculture). Finally, it
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should be evaluated how the accuracy would improve if localised input data were
used in the models (i.e. research mode).

2. Applicability - evaluate application of models in certain areas and conditions.

This criteria looks at issues such as, whether the models can be applied globally and
how they perform in various vegetation types and climatological conditions.

3. Data Accessibility - evaluate access to input data.

In this criteria we consider whether the models require data which is not free and
open or which is not operationally acquired and produced. In addition, the number
of separate data sources is taken into account.

4. Functionality - evaluate how user friendly it is to run the models.

This criteria evaluates if accurate results can be obtained when running the models
with default values or whether user interaction is required and how much EO or ET
knowledge is required for such customisation. In addition, it considers the outputs
which the models produce and the ease with which the models can be integrated
with SNAP.

5. Performance - evaluate how computationally performant are the models.

We look at the computing execution time (e.g. over a whole Sentinel-2 scene), ro-
bustness in returning valid data, stability when running over long time series, any
special software or hardware requirements and suitability for execution in a cloud
environment.

6. Other considerations - additional items to consider regarding the models.

This includes issues such as popularity of the model in the research and applied
communities, existing implementations of the models and potential for uptake and
community development.

Each of the models was quantitatively (when relevant) and qualitatively evaluated
against those six criteria by the members of the consortium and the project Technical
O�cer. Afterwards, the models were ranked on how well they satisfy the criteria and �nal
decision on model selection was taken.

2.2 Benchmarking results

The evaluation of the ET models and LST sharpening approaches based on the six criteria
is presented in the sections below. This is followed by a summary and selection of methods
for implementation in the second phase of SEN-ET project.

2.2.1 Accuracy

The accuracy of the models was validated at 11 �ux tower sites located in Europe, Africa
and North America (see Figure 2.1). Five of those sites were located in agricultural �elds
(three in herbaceous crops and two in woody crops), two in savannah, two in grassland
and one each in conifer and broadleaved forests. Validation was performed using all the

4000121772/17/I-NB Version 1.3 Page 60 of 93



ESA Sentinels for Evapotranspiration

Figure 2.1: Map showing locations of validation sites. Only Primary sites were used for
accuracy assesment.

Sentinel-2 observations in 2017 which were cloud free in the vicinity of the towers and
Sentinel-3 observations which were acquired on the day of the Sentinel-2 observation or
within four days afterwards.

The two sharpening approaches, produced very similar high-resolution LST maps, al-
though when visual spatial comparison was conducted certain di�erences were apparent
(see Figure 2.2). However, no signi�cant di�erences between the NN and DT approaches
were observed when using their output high-resolution LST to estimate land surface en-
ergy �uxes and validating them again �ux tower measurements. For brevity, the results
obtained using DT sharpener are used throughout the rest of the benchmarking evaluation.

Regarding the ET models, the aggregated results from all the sites are shown in Table
2.1. The results from the agricultural sites are shown in Table 2.2. In both cases, TSEB-
PT achieves consistently lower Root Mean Square Error (RMSE) and higher correlation in
the turbulent �ux (sensible heat - H and latent heat - λE) estimates than either METRIC
or ESVEP. The situation is more complex when considering ESVEP and METRIC with
the accuracy ranking varying between the two models. For example ESVEP appears to
be more accurate in herbaceous crops while METRIC performs better in woody crops.
Looking at overall statistics, METRIC produced H with signi�cantly lower RMSE but also
lower correlation, while the RMSE of λE produced by both models is similar with ESVEP
obtaining higher correlation.

Finally, the accuracy of TSEB-PT is expected to improve more than that of other
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(a) Decision Tree (b) Arti�cial Neural Network

Figure 2.2: Spatial patterns comparison between decision-tree and neural-network sharp-
ened temperatures. Images correspond to one of the validation sites on September 27th,
2017. The black dot shows the location of the �ux tower.

models if localised data on parameters such as vegetation heigh or fraction of vegetation
which is green is available.

Ranking ET models: 1 - TSEB-PT, 2 -, 3 - METRIC & ESVEP

Ranking sharpening approaches: 1 - NN & DT, 2 -

2.2.2 Applicability

Applicability was assessed based on the same 11 validation sites as accuracy, but this
time grouped by land cover and climatology. Once again the two sharpening approaches
performed very similarly in all cases.

The results for the ET models are shown in Table 2.3 (land cover) and Table 2.4
(climatology). For brevity, only the accuracy statistics for H and λE are shown in those
tables. TSEB-PT once again outperforms the other models in accuracy metrics across all
land cover classes, with the exception of latent heat �ux in forests where METRIC has
signi�cantly lower RMSE. However, METRIC was able to produce λE in 8 cases in the
forest class while TSEB-PT produced 13 valid values. When comparing METRIC and
ESVEP, the �rst model produced more accurate results in croplands and savannah, while
the second was more accurate in grasslands. Considering climatology, TSEB-PT achieved
the most accurate outputs and, especially in semi-arid climate, was able to produce more
valid outputs than the other two models. METRIC performed better than ESVEP when
estimating H in semi-arid locations, while the situation was reversed in temperate sites.
The di�erence between those two models was not very signi�cant in both climatologies
when it came to estimating latent heat �ux.

The reason for larger number of valid cases produced by TSEB-PT as compared to both
METRIC and ESVEP, particularly in semi-arid climate, is due to intrinsic assumptions by
the latter models. Both of them scale the ET value in a given pixel between the values of
theoretical hot (no ET) and cold (potential ET) pixels. In METRIC those hot and cold
pixels are retrieved from a speci�ed area of interest (AOI) in the satellite image, while in
ESVEP they are derived from the pixel itself. In certain locations, such as in rainfed olive
groves surrounded by dry natural vegetation, it might not be possible to reliably identify
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Table 2.1: Error metrics for METRIC, TSEB-PT and ESVEP modelled �uxes using sharp-
ened temperatures. N, number of valid cases; Obs.; mean of observed values (W m−2);
bias, mean di�erence between predicted and observed (W m−2); MAE, Mean Absolute
Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative RMSE (�);
r, Pearson correlation coe�cient (�).

variable model N Obs. bias MAE RMSE rRMSE r

H
METRIC 242 171 15 95 146 0.854 0.286
TSEB-PT 309 176 -44 60 75 0.426 0.734
ESVEP 259 166 67 137 207 1.246 0.413

λE
METRIC 229 199 9 103 130 0.654 0.334
TSEB-PT 304 180 36 70 88 0.491 0.770
ESVEP 219 193 -13 103 127 0.656 0.431

Rn

METRIC 250 456 -13 35 46 0.101 0.943
TSEB-PT 331 441 12 38 51 0.116 0.919
ESVEP 322 440 5 38 50 0.114 0.918

G
METRIC 244 86 -16 47 56 0.655 0.597
TSEB-PT 325 83 20 43 55 0.661 0.571
ESVEP 317 84 26 48 62 0.734 0.485

the hot and cold pixels within the AOI or to derive their values. In those cases, METRIC
and ESVEP do not produce valid results. It should be noted that in an irrigated area
surrounded by arid landscape, arguably a case of most need of ET estimates, METRIC
and ESVEP should perform well.

Ranking ET models: 1 - TSEB-PT, 2 -, 3 - METRIC & ESVEP

Ranking sharpening approaches: 1 - NN & DT, 2 -

2.2.3 Data Accessibility

The two LST sharpening approaches used exactly the same inputs in this study: high-
resolution re�ectances, DEM and solar illumination conditions and low-resolution LST.

The major inputs of the three ET models are listed in Table 2.5. All the models re-
quire inputs from three major data sources: optical satellite observations, thermal satellite
observations and meteorological models. In this project, Sentinel-2 is used as the source of
optical data, Sentinel-3 as the source of thermal data and ERA-5 dataset from ECMWF
as source of meteorological data. Those three data sources are operationally produced
and disseminated in the free and open manner through the European Union's Copernicus
programme.

TSEB-PT and ESVEP additionally require some parameters which cannot be easily
determined through satellite observations or modelling and therefore are set using a land-
cover based look-up table. The most important of those is canopy-height since both ESVEP
and TSEB-PT are quite sensitive to this parameter. In METRIC, vegetation height is used
to separate the land cover classes into tall and short vegetation during end-member pixel
search and to compute surface roughness. However, it is expected that METRIC is less
sensitive to vegetation height estimation than ESVEP and TSEB-PT.
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Table 2.2: Crop type dependence errors for METRIC, TSEB and ESVEP modelled �uxes
using sharpened temperatures. N, number of valid cases; Obs.; mean of observed values
(W m−2); bias, mean di�erence between predicted and observed (W m−2); MAE, Mean
Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative
RMSE (�); r, Pearson correlation coe�cient (�).

variable crop type model N Obs. bias MAE RMSE rRMSE r

H

herbaceous
METRIC 39 123 71 80 93 0.759 0.571
TSEB-PT 39 123 -54 63 82 0.667 0.479
ESVEP 37 122 19 57 76 0.625 0.497

woody
METRIC 40 146 25 73 88 0.601 0.014
TSEB-PT 66 172 -56 68 84 0.490 0.620
ESVEP 49 156 127 173 244 1.563 0.384

λE

herbaceous
METRIC 35 246 -83 98 119 0.482 0.520
TSEB-PT 35 246 -2 56 70 0.283 0.711
ESVEP 34 245 -54 69 92 0.375 0.619

woody
METRIC 40 275 -14 75 89 0.322 0.772
TSEB-PT 66 235 49 66 84 0.359 0.845
ESVEP 41 264 -58 119 142 0.538 0.404

Rn

herbaceous
METRIC 41 413 -7 26 36 0.087 0.967
TSEB-PT 41 413 0 25 34 0.083 0.969
ESVEP 40 411 6 25 33 0.081 0.972

woody
METRIC 40 455 20 25 35 0.077 0.974
TSEB-PT 83 437 34 36 44 0.101 0.968
ESVEP 80 439 10 37 47 0.106 0.915

G

herbaceous
METRIC 41 45 2 39 47 1.026 0.487
TSEB-PT 41 45 50 62 73 1.608 0.316
ESVEP 40 46 35 49 57 1.236 0.548

woody
METRIC 40 34 42 44 53 1.586 0.335
TSEB-PT 83 38 66 69 75 1.980 0.447
ESVEP 80 38 86 87 99 2.569 0.451
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Table 2.3: Error dependence on land cover for METRIC, TSEB-PT and ESVEP modelled
�uxes using sharpened temperatures. N, number of valid cases; Obs.; mean of observed
values (W m−2); bias, mean di�erence between predicted and observed (W m−2); MAE,
Mean Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE,
Relative RMSE (�); r, Pearson correlation coe�cient (�).

variable land cover model N Obs. bias MAE RMSE rRMSE r

H

cropland
METRIC 79 135 48 77 91 0.672 0.271
TSEB-PT 105 154 -55 66 83 0.542 0.617
ESVEP 86 141 81 123 191 1.348 0.418

grassland
METRIC 100 195 -16 117 170 0.870 0.221
TSEB-PT 101 194 -26 51 64 0.328 0.814
ESVEP 91 185 8 113 161 0.869 0.428

savanna
METRIC 52 185 -18 52 67 0.362 0.777
TSEB-PT 90 186 -47 57 69 0.371 0.779
ESVEP 71 175 139 187 276 1.579 0.476

forest
METRIC 11 140 221 222 354 2.535 0.528
TSEB-PT 13 151 -72 94 115 0.763 0.502
ESVEP 11 147 -12 116 138 0.941 0.480

λE

cropland
METRIC 75 262 -46 85 104 0.397 0.614
TSEB-PT 101 239 31 63 80 0.333 0.795
ESVEP 75 256 -56 96 122 0.477 0.462

grassland
METRIC 94 130 99 132 163 1.254 0.306
TSEB-PT 100 129 47 71 86 0.671 0.765
ESVEP 84 133 41 102 120 0.902 0.417

savanna
METRIC 52 221 -65 82 98 0.442 0.352
TSEB-PT 90 158 25 73 94 0.594 0.493
ESVEP 49 189 -45 107 136 0.719 0.144

forest
METRIC 8 269 -50 68 83 0.310 0.934
TSEB-PT 13 277 71 95 125 0.450 0.969
ESVEP 11 254 19 133 166 0.654 0.853
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Table 2.4: Climate dependence of errors for METRIC, TSEB and ESVEP modelled �uxes
using sharpened temperatures. N, number of valid cases; Obs.; mean of observed values
(W m−2); bias, mean di�erence between predicted and observed (W m−2); MAE, Mean
Absolute Error (W m−2), RMSE, Root Mean Square Error (W m−2); rRMSE, Relative
RMSE (�); r, Pearson correlation coe�cient (�).

variable climate model N Obs. bias MAE RMSE rRMSE r

H

semi-arid
METRIC 177 192 -16 90 136 0.710 0.326
TSEB-PT 242 193 -44 60 73 0.380 0.744
ESVEP 198 182 80 157 231 1.268 0.369

temperate
METRIC 65 113 101 107 169 1.496 0.486
TSEB-PT 67 116 -45 59 81 0.700 0.472
ESVEP 61 114 25 71 93 0.817 0.458

λE

semi-arid
METRIC 171 180 37 108 137 0.760 0.298
TSEB-PT 241 160 41 72 90 0.560 0.745
ESVEP 161 174 0 109 132 0.757 0.352

temperate
METRIC 58 254 -72 88 107 0.422 0.747
TSEB-PT 63 257 16 61 84 0.325 0.866
ESVEP 58 246 -47 85 111 0.452 0.712

Table 2.5: Main input parameters for the ET models.

Parameter Source TSEB-PT ESVEP METRIC

Land surface temperature S3 X X X
Air temperature ECMWF X X X
Wind speed ECMWF X X X
Incoming solar radiation ECMWF X X X
Leaf Area Index S2 X X X
Albedo S2 X X X
Fraction of vegetation which is green S2 X
Canopy height Look-up X X X
Leaf parameters (orientation, width, etc.) Look-up X X
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TSEB-PT requires one additional input: fraction of vegetation which is green. It is
particularly important in woody vegetation or in herbaceous vegetation during senescence
[43]. Although this parameter can be determined from S2 observations, the method for
deriving it is still not fully established and therefore it is not yet of operational quality.

Ranking ET models: 1 - METRIC, 2 - ESVEP, 3 - TSEB-PT

Ranking sharpening approaches: 1 - NN & DT, 2 -

2.2.4 Functionality

As discussed in the section above, the models vary in the number and types of inputs they
need. This is due to their varying complexity, with TSEB-PT being the most complex
and METRIC the simplest. However, this does not directly translate to their levels of user
friendliness.

When discussing accuracy and applicability, we used results obtained with default
model settings and inputs. In this comparison TSEB-PT came out on top and therefore
it is viable for the users to run it without �ne-tuning any of the settings. To improve
the results the users could change the values in the land-cover based look-up table using
their knowledge of their area of interest. The parameters in the look-up table, such as
vegetation height or leaf angle orientation, are easy to understand for non-EO experts,
such as agronomists. Since ESVEP relies on a similar look-up table, potentially it could
also produce more accurate results with location speci�c modi�cations.

The simplest way for non-EO expert to modify METRIC outputs is to change the AOI
over which the search for hot and cold pixels is conducted. This is a more subjective choice
compared to look-up table modi�cation, and therefore might require some trial and error
before the user gains enough experience to improve the model results.

Integrating any of the models into SNAP should present similar amount of e�ort. The
GUI for TSEB-PT and ESVEP might look a bit more complex than that of METRIC due
to larger number of inputs but this should not be a critical issue.

Since TSEB-PT and ESVEP are two-source models, they produce plant transpiration
and soil evaporation as two separate outputs. During our discussion with the end-users,
they indicated that such separation of ET is of high interest to them. It should be noted
however, that the two components of ET have been rarely validated separately (due to
di�culty in measuring them separately in the �eld) and therefore their accuracy is still
unknown.

The DT and NN sharpening approaches have very similar user interface and could be
integrated in SNAP in a very similar fashion. However, it might be simpler for an average
user to understand and �ne tune DT model parameters (e.g. number of leaf nodes) than
to do the same for NN (e.g. number of hidden layers). In addition, the inputs to NN
models have to be normalised before being used. This is done automatically in the script
but still might place some constraints on the types of input data (e.g. land-cover map)
the user might want to use during the sharpening. DT, on the other hand, can handle
heterogeneous inputs more easily.

Ranking ET models: 1 - TSEB-PT & ESVEP, 2 - METRIC, 3 -

Ranking sharpening approaches: 1 - DT, 2 - NN
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2.2.5 Performance

The computational performance of the three ET models was benchmark by timing their
execution over �ve, mostly cloud-free Sentinel-2 images (100 km by 100 km each). This
resulted in running the models for over 125 000 000 pixels. The test was run on a cloud-
based Ubuntu machine with 8 virtual cores and 64 GB of RAM and data located on a
virtual disk. The results are presented in Table 2.6. It should be noted that the tests were
performed on prototype code and in the �nal implementation the performance is expected
to signi�cantly improve.

Table 2.6: Computational performance of the ET models as tested over �ve Sentinel-2
images on a cloud-based Ubuntu machine with 8 virtual cores and 64 GB of RAM and
data located on a virtual disk.

TSEB-PT ESVEP METRIC
Average execution time per S2 image (minutes) 17 12 6
Maximum RAM usage per S2 image (GB) 34 29 17

TSEB-PT is the most complex of the evaluated models, requiring the largest number
of model equations and parameters. In addition it has two nested iterative convergence
loops. This complexity is re�ected in the longest execution time and highest usage of RAM
out of all three models.

ESVEP uses many of the same equations as TSEB-PT but through certain approxi-
mations and assumptions it avoids some of parameters and one of the convergence loops.
This leads to ESVEP being less computationally demanding compared to TSEB-PT.

Both TSEB-PT and ESVEP are based on the two-source approach, in which the �uxes
from the canopy and soil are calculated and treated separately. METRIC, on the other
hand, is a one-source model in which bulk canopy and soil �uxes are estimated. Therefore,
it has to perform the least number of calculations and after the hot and cold pixels are
selected it is very quick in deriving the �ux values. This makes it the most performant of
the three models.

When running the models over a large (country scale) area it is often required to use
cloud computing resources and to employ coding techniques such as data chunking or par-
allelisation to achieve e�cient execution. TSEB-PT and ESVEP are executed purely on
per-pixel basis, which makes it easier to implement them using those techniques. MET-
RIC cold and hot pixel selection needs to be performed on a speci�ed AOI and this might
somewhat complicate e�cient code implementation. The AOI selection requires user in-
put, which again makes METRIC less suitable for fully automatic execution, compared to
TSEB-PT and ESVEP. When processing a time-series of images, all three models consider
images one time-step at a time so if one image cannot be processed it does not have any
impact on subsequent execution.

The performance of the sharpening methods was benchmarked on the same dataset
and in the same environment as the ET models and the results are shown in Table 2.7.
DT method is much more memory e�cient and therefore it was possible to execute the
workload on six processors in parallel, leading to short execution time. For NN approach,
only two processors could be used in parallel before the machine reached its limit of 64 GB
RAM. This contributed to the longer execution time of this approach.
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Table 2.7: Computational performance of the LST sharpening methods (NN - neural net-
works, DT - decision trees) as tested over �ve Sentinel-2 images on a cloud-based Ubuntu
machine with 8 virtual cores and 64 GB of RAM and data located on a virtual disk.

DT NN
Average execution time per S2 image (minutes) 5.5 21
Maximum RAM usage per S2 image (GB) 26 43

Ranking ET models: 1 - METRIC, 2 - ESVEP, 3 - TSEB-PT

Ranking sharpening approaches: 1 - DT, 2 - NN

2.2.6 Other considerations

Both METRIC and TSEB-PT are established and well researched ET models, while ES-
VEP is rather new and has not yet been evaluated in many scienti�c studies. Therefore, it
would be harder to build a community around ESVEP compared to the other two models.

An online search has shown that while a number of open-source implementations of
METRIC are available for download, no such implementation exists for TSEB-PT apart
from the one used in this project. Therefore it might be simpler to focus community
contributions to code, documentation and testing on our Python implementation of TSEB-
PT than it would be for METRIC implementation.

Regarding the sharpening methods, both should have similar uptake and contribution
from the community.

Ranking ET models: 1 - TSEB-PT, 2 - METRIC, 3 - ESVEP

Ranking sharpening approaches: 1 - NN & DT, 2 -

2.2.7 Overall assessment and model selection

Table 2.8 summarizes the output of the ET model benchmarking. TSEB-PT model ob-
tained the most accurate �ux estimates when compared to �ux tower measurements and
consistently outperformed the other models across di�erent vegetation types and clima-
tologies. This is partly due to this model's increased complexity which is re�ected in input
data requirements and computational performance. However, it is expected that once the
prototype model code is refactored and optimised the computational performance will in-
crease signi�cantly. Therefore, the TSEB-PT model is chosen to be implemented as as
SNAP plugin in the second phase of the SEN-ET project.

Regarding the LST sharpening approaches, they performed very similarly with respect
to accuracy and applicability. They also require exactly the same inputs. The NN net-
work approach might need more care if new input data is to be added, since it requires
normalisation, and it is less computationally e�cient compared to the DT. Therefore, the
DT version of DMS will be the focus of further development in phase 2 of SEN-ET.
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Table 2.8: Summary of the evapotranspiration model benchmarking.

Criteria METRIC TSEB-PT ESVEP

Accuracy 3 1 3

Applicability 3 1 3

Data Accessibility 1 3 2

Functionality 2 1 1

Performance 1 3 2

Others 2 1 3
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Chapter 3

Detailed model implementations

3.1 Net radiation

The code used is available at https://github.com/hectornieto/pyTSEB/net_radiation.
py and is based on Campbell and Norman [51] radiative transfer model in which net short-
wave radiation is caculated as

Sn,C,λ = (1− ρC,λ) (1− τC,λ)S↓,λ (3.1)

Sn,S,λ = (1− ρS,λ) τC,λS
↓
λ (3.2)

where S↓λ (W m−2) is the incoming spectral shortwave radiation, tauC,λ is spectral trans-
mittance through the canopy, ρS,λ and ρC,λ are respectively soil and canopy spectral hemi-
spherical re�ectances (i.e. spectral albedo). The subscript λ is due to that shortwave
transmission through the canopy depends on the wavelength due to vegetation absorbing
a greater portion of the photosynthetically active radiation (PAR,λ = [400− 700] nm)
than near-infrared radiation (NIR, λ = [700− 2500] nm) wavelengths. τC,λ and αC,λ are
partitioned into four components each having a view factor for either direct-beam or dif-
fuse irradiance (Wd,λ) and the ratio of PAR to total shortwave irradiance. The canopy
transmittance and re�ectance for a horizontally homogeneous canopy are de�ned as

τC,λ = (1−Wd,λ) τC,b,λ +WdτC,d,λ (3.3)

ρC,λ = (1−Wd,λ) ρC,b,λ +WdρC,d,λ (3.4)

where τC, b, λ and τC, d, λ the spectral transmittance for beam direct and di�use, irradi-
ance respectively, with

τC,b,λ =

(
ρ∗C,λ

2 − 1
)

exp
(
−√αleaf,λκb,θΩθPAI

)(
ρ∗C,λρS,λ − 1

)
+ ρ∗C,λ

(
ρ∗C,λ − ρS,λ

)
exp

(
−2
√
αleaf,λκb,θΩθPAI

) (3.5)

ρC,b,λ =
ρ∗C,λ +

ρ∗C,λ−ρS,λ
ρ∗C,λ∗ρS,λ−1 exp

(
−√αleaf,λκb,θΩθPAI

)
1 + ρ∗C,λ +

ρ∗C,λ−ρS,λ
ρ∗C,λ∗ρS,λ−1 exp

(
−√αleaf,λκb,θΩθPAI

) (3.6)

where ρ∗C,λ is the beam spectral re�ectance factor for a deep canopy with non-horizontal
leaves, αleaf,λ is the leaf spectral absorption, Ωθ PAI is the e�ective plant area index (m2
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m2), and ρS,λ is the soil bihemispherical spectral re�ectance. Di�use canopy spectral
transmittance (τC,d,λ) and re�ectance (ρC,d,λ) are calculated by numerically integrating
Eq 3.5 over the hemisphere. The extinction coe�cient for direct-beam (κb,θ) is calculated
based on Campbell [52] ellipsoidal leaf angle distributuion function:

κb,θ =

√
χ2 + tan2 θ

χ+ 1.774 (χ+ 1.182)−0.733 (3.7)

where χ is the ratio of horizontal to vertical projected unit of area of leaves (χ = 1 for a
spherical leaf angle distribution), and θ is the incidence zenith angle

The increased downwelling radiation that is re�ected by the soil and then scattered by
the canopy back down to the ground surface is accounted for in the ρ∗C,λ and ρS,λ terms.

ρ∗C,θ,λ =
2κb,θρh,λ
1 + κb,θ

(3.8)

ρh,λ =
1−√αleaf,λ
1 +
√
αleaf,λ

(3.9)

leaf absorption is computed as ζλ = 1− ρleaf,λ− τleaf,λ, with ρleaf,λ and τleaf,λ with being
the leaf bihemispherical spectral re�ectance and transmittance, respectively.

Ω is the vegetation clumping factor proposed by Kustas and Norman [50] for sparsely
vegetated areas, which can be set to 1 for homogeneous canopies. Otherwise the nadir
viewing clumping index (Ω0) is de�ned as the factor that modi�es the leaf area index of
a clumped canopy (F = PAI/fcover) in a homogeneous canopy with LAIeff = Ω0 F such
as its at-nadir gap fraction G0 is the same as the gap fraction of the canopy.

Ω0 =
− log (G0)

κb,0 F
(3.10)

Then, the o�-nadir clumping index is calculated using the empirical formula for randomly
placed canopies proposed by Kustas and Norman [50]

Ωθ =
Ω0

Ω0 + (1− Ω0) exp (−2.2 θp)
(3.11)

p = 3.8− 0.46
hc
wc

; 1 ≤ hc
wc
≤ 3.34 (3.12)

where hc and wc are canopy height and width respectively.
On the other hand, net longwave radiation is computed as

Ln,C = [1− exp (−κlPAI)]
[
εC

(
L↓ + LS

)
− 2LC

]
(3.13)

Ln,S = εS exp (−κlPAI)L↓ + εS [1− exp (−κlPAI)]LC − LS (3.14)

with κl ≈ 0.95 is the long-wave radiation extinction coe�cient, and LS , LC and L↓ (W
m−2) are the long-wave emissions from soil, canopy and sky. The Stefan-Boltzman equation
based on soil, canopy and air temperatures can be used to compute LS , LC and L↓.

LS = εSσT
4
S (3.15)

LC = εCσT
4
C (3.16)

L↓ = εatmσT
4
air (3.17)
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where εS , εC , and εatm are emissivity for soil, canopy and air respectively, and σ is the
Stefan-Boltzman constant.

However, Eq. 3.13 requires the estimation of both canopy and soil temperatures and
hence it is only valid for TSEB models. Therefore, for METRIC, like in other OSEB
models, net longwave radiation calculation is simpli�ed to

Ln = εL↓ − εσT 4
rad (3.18)

with ε being the surface emissivity (ε = fcεC + (1− fc) εS).

3.2 METRIC

The code used is available at https://github.com/hectornieto/pyMETRIC
Sensinble heat �ux is computed in METRIC as

H = ρaCp
δT

RAH
(3.19)

with ρaCp is the volumetric heat capacity of air (J m−3 K−1), RAH is the aerodynamic
resistance to heat transport (s m−1), and ∆T is computed as

δT = c+mTrad (3.20)

Linear coe�cients c and m are computed form a set of two linear equations function of
endmember of hot and cold pixels

m =
δThot − δTcold
Thot − Tcold

(3.21)

c = δThot −mThot (3.22)

with ∆Thot and ∆Tcold computed as

δTcold = (Rn,cold −Gcold − λEcold)
RAH,cold
ρa,coldCp

(3.23)

δThot = (Rn,hot −Ghot − λEhot)
RAH,hot
ρa,hotCp

(3.24)

where λEhot ≈ 0 and λEcold is an empirical function of the ASCE's [56] 0.5 m tall alfalfa
reference evapotranspiration (λEcold = 1.05fcλEASCE)

Net radiation calculation follows the procedure described in 3.1, whereas soil heat �ux
is computed as in [31]

G = Rn
[
(Trad − 273.15) ∗ (0.0038 + 0.0074 ∗ α) ∗

(
1− 0.98 ∗ f4

c

)]
(3.25)

where α is the surface albedo (α = 1 − Sn/S
↓), and fc is the green fractional cover

(fc = 1− exp (−0.5LAI))
Finally, the aerodynamic resistance to heat transport in calculated based on Allen et al.

[32]:

RAH =
log (z2/z1)−ΨH (z2) + ΨH (z1)

κu∗
(3.26)

where z2 is at 2m, z1 = 0.1 m, ΨH (ζ) are adiabatic correction functions for heat transport,
u∗ is friction velocity (m s−1) and κ = 0.41 is the von Kàrman constant.
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3.2.1 Automatic search of cold and hot pixels

We adopted the Exhaustive Search Algorithm described in Bhattarai et al. [57], which is
based on dynamic thresholds of a vegetation index (fcover in our case), surface temperature
(Trad), and surface albedo (α).

In a �rst step we �lter all candidate pixels -excluding those pixels classi�ed as wa-
ter bodies, urban, snow/ice and shadow/cloud- based on their homogeneity compared to
neighbouring pixels. Homogeneity calculations are based on a 11x11 pixels (i.e. 220x220
m) moving window, where candidate pixels are those which the coe�cients of variation for
fcover and α are lower than 0.25, and Trad standard deviation is lower that 1.5 K.

Then histograms are built from Trad and fcover values in order to remove possible
outliers. Histogram bins are created from 0.25 K size in Trad 0.01 in fcover, while ensuring
that the minimum and maximum bins contain at least 50 pixels. All pixels within the �st
and last bin for each variable (Trad and fcover) are excluded as outliers.

Now the method looks for the coldest pixels with the highest fractional cover, but
instead of searching for a single pixel, the method aims at searching as set of pixels in a
iterative approach. It starts selecting those pixels that are within the 1% highest fcover
(i.e. percentile 99%) and 1% lowest Trad, decreasing the fcover percentile threshold to 1
point up to a maximum threshold decrease of 10% (i.e. percentile 90%), until at least
10 pixels are found. If not enough pixels are found, then the Trad percentile threshold is
increased 1 point (i.e. 2%) and the search is started again, until a maximum Trad percentile
threshold of 10%. In case that after all these iterations (i.e. when the number of pixels on
the 10% highest fcover and 10% lowest Trad is less than 10) the maximum allowed percentile
thresholds are relaxed and increased to 5 points (i.e. minimum fcover percentile threshold
during the iterative search is now 85%). This step is repeated until at least 10 pixels are
found.

A similar approach is done for searching the hot pixels, which iterative search starts
from those pixels with lowest vegetation cover (1% percentile) and highest temperature
(99% percentile). Finally, the hot and cold pixels used in METRIC are the ones with the
highest Trad − fcover and (fcover − Trad) value, respectively.

3.3 TSEB

The code used is available at https://github.com/hectornieto/pyTSEB The basic equa-
tion of the energy balance at the surface can be expressed following Eq. 3.27.

Rn ≈H + λE +G (3.27a)

Rn,S ≈HS + λES +G (3.27b)

Rn,C ≈HC + λEC (3.27c)

with Rn being the net radiation, H the sensible heat �ux, λE the latent heat �ux or ET,
and G the soil heat �ux. �C� and �S� subscripts refer to canopy and soil layers respectively.
The symbol �≈� appears since there are additional components of the energy balance that
are usually neglected, such as heat advection, storage of energy in the canopy layer or
energy for the �xation of CO2 [83]
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The key in TSEB models is the partition of sensible heat �ux into the canopy and soil
layers, which depends on the soil and canopy temperatures (TS and TC respectively). If
we assume that there is an interaction between the �uxes of canopy and soil, due to an
expected heating of the in-canopy air by heat transport coming from the soil, the resistances
network in TSEB can be considered to be in series. In that case H can be estimated as in
Eq. 3.28 [36, Eqs. A1-A3]

H = HC +HS =ρairCp
TAC − TA

Ra

=ρairCp

[
TC − TAC

Rx
+
TS − TAC

Rs

] (3.28)

where ρair is the density of air (kg m−3), Cp is the heat capacity of air at constant pressure
(J kg−1 K−1) , TAC is the air temperature at the canopy interface, equivalent to the
aerodynamic temperature T0, computed with Eq. 3.29 [36, Eq. 4].

TAC =

TA
Ra

+ TC
Rx

+ TS
Rs

1
Ra

+ 1
Rx

+ 1
Rs

(3.29)

Here Ra is the aerodynamic resistance to heat transport (s m−1), Rs is the resistance to
heat �ow in the boundary layer immediately above the soil surface (s m−1), and Rx is the
boundary layer resistance of the canopy of leaves (s m−1). The mathematical expressions
of these resistances are detailed in Eq. 3.30 and in Norman et al. [36] and Kustas and
Norman [53] and discussed in Kustas et al. [28].

Ra =
ln
(
zT−d0
z0H

)
−Ψh

(
zT−d0
L

)
+ Ψh

(
z0H
L

)
κ′ u∗

(3.30a)

Rs =
1

c (TS − TA)1/3 + b us
(3.30b)

Rx =
C ′

LAI

(
lw

Ud0+z0M

)1/2

(3.30c)

where u∗ is the friction velocity (m s−1) computed as:

u∗ =
κ′ u[

ln
(
zu−d0
z0M

)
−Ψm

(
zu−d0
L

)
+ Ψm

(
z0M
L

)] (3.31)

In Eq. 3.31 zu and zT are the measurement heights for wind speed u (m s−1) and
air temperature TA (K), respectively. d0 is the zero-plane displacement height, z0M and
z0H are the roughness length for momentum and heat transport respectively (all those
magnitudes expressed in m), with z0H = z0M exp

(
−kB−1

)
. In the series version of TSEB

z0H is assumed equal to z0M since the term Rx already accounts for the di�erent e�ciency
between heat and momentum transport [36], and therefore kB−1 = 0. The value of κ′ = 0.4
is the von Karman's constant. The Ψm (ζ) terms in Eqs. 3.30a and 3.31 are the adiabatic
correction factors for momentum. The formulations of these two factors are described in
Brutsaert [26] and Brutsaert [25]. These corrections depend on the atmospheric stability,
which is expressed using the Monin-Obukhov length L (m):
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L =
−u3
∗ρair

k g
[
H/(TACp) + 0.61E

] (3.32)

where H is the bulk sensible heat �ux (W m−2), E is the rate of surface evaporation (kg
s−1), and g the acceleration of gravity (m s−2)

The coe�cients b and c in Eq 3.30b depend on turbulent length scale in the canopy,
soil-surface roughness and turbulence intensity in the canopy, which are discussed in Sauer
et al. [84], Kondo and Ishida [85] and Kustas et al. [28]. C ′ is assumed to be 90 s

1/2 m−1

and lw is the average leaf width (m)
Wind speed at the heat source-sink (z0M + d0) and near the soil surface was originally

estimated using Goudriaan [86] wind attenuation model (Eq 3.33)

U (z) =UC exp [−aG (1− z/hc)] (3.33)

aG =0.28LAI2/3h1/3
c l−1/3

w (3.34)

Since Eqs. 3.28-3.32 are interrelated, an iterative scheme is performed until the con-
vergence of L and u∗ is reached. The iterative process is as follows: neutral conditions
are �rstly assumed (L −→ ∞, ΨM (ζ) = 0 and ΨH (ζ) = 0) and an initial estimate of
H is calculated using Eqs. 3.31 to 3.28, and E with Eq. 3.27. An initial value of L is
then obtained from Eq. 3.32 and the stability functions are then calculated, which gives
a new friction velocity (Eq. 3.31) and resistance set (Eq. 3.30) and new estimates of H
and E (Eqs. 3.29, 3.28 and 3.27). L is recalculated again and the process continues (Eqs.
3.32-3.28) until the change in L and u∗ between two successive iterations is lower than a
certain threshold.

When only a single observation of Trad is available (i.e. measurement at a single angle),
partitioning of Trad requires some assumptions to help to de�ne TC or TS . One approach
developed for TSEB [36] starts with an initial estimate that assumes plants are transpiring
at a potential rate, as de�ned by the Priestley and Taylor [87] relationship, applied to the
canopy divergence of net radiation (Rn,C)

λEC = αPT fg
∆

∆ + γ
Rn,C (3.35)

where αPT is the Priestley-Taylor coe�cient, initially set to 1.26, fg is the fraction of
vegetation that is green and hence capable of transpiring, ∆ is the slope of the saturation
vapour pressure versus temperature curve, and γ is the psychrometric constant. This allows
the canopy sensible heat �ux to be calculated using the energy-balance at the canopy layer
(Hc = Rn,C − λEC) and hence an estimate of TC to be obtained by inverting Eq. 3.28
[36, Eqs. A7, A11 and A12]. Then TS is the derived from Eq. 3.36 having both Trad and
TC and an estimate of fc (θ) the fraction of vegetation observed by the sensor view zenith
angle θ.

T 4
rad (θ) = fc (θ)T 4

C + [1− fc (θ)]T 4
S (3.36)

The value of fc (θ) is typically estimated as an exponential function of the leaf area index,
which includes a clumping factor or index Ω where the LAI is concentrated for plants
sparsely [50, 82] and has the following form.
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fc (θ) = 1− exp

(
−0.5ΩLAI

cos θ

)
(3.37)

If the initial TC implied by this approximation is unusually low in comparison with the
observed Trad, TS will likely be overestimated and therefore produce unrealistic estimates
of soil latent heat �ux (negative values during daytime). In this case, the αPT coe�cient is
iteratively reduced assuming the canopy is stressed and transpiring at sub-potential levels
until soil latent heat �ux becomes zero or positive.

3.4 ESVEP

The code used is available at https://github.com/DHI-GRAS/py-esvep.
All the equations in Section 3.3 are also applied to ESVEP.

3.5 sharpening models

The code used is available at https://github.com/radosuav/pyDMS
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Chapter 4

Data preprocessing details

The code used is available at https://github.com/DHI-GRAS/sen-et-input-scripts/

upon access granted by GRAS-DHI. The atmospheric correction of the MSI observations
was performed using the Sen2Cor processor [65] v2.5.5 in order to obtain bottom-of-
atmosphere (BOA) re�ectance values. The Sen2Cor processor was con�gured to use rural
aerosol type, with both atmospheric pro�le (summer or winter) and ozone concentration
chosen automatically from the scene metadata. Aerosol optical thickness and total col-
umn water vapour content are determined from the MSI observations themselves using all
possible spectral bands. The output of the processor was set at 20 m spatial resolution,
and included 9 spectral bands (2-7, 8A, 11 and 12) as well as land cover classi�cation and
a cloud mask. Due to the inaccuracies present in the cloud mask, it was �rst cleaned up
using a 5x5 pixel majority �lter, before being dilated using 20x20 pixel �lter. The BOA
re�ectance values were then used as input to the Biophysical Processor [66] available in the
SNAP software v6.0.1 (step.esa.int - last accessed 28.11.2018) in order to obtain green Leaf
Area Index (LAI), Fractional Vegetation Cover (FVC), Fraction of Absorbed Photosyn-
thetically Active Radiation (FAPAR), Canopy Chlorophyll Content (CCC) and Canopy
Water Content (CWC).

The thermal data needed to drive the evapotranspiration model was obtained from
the Sea and Land Surface Temperature Radiometer (SLSTR) on board of the Sentinel-
3A satellite [69]. At this moment there was not totally availability of SLSTR L2 LST
product, and therefore we used the SLSTR L1 radiance product to convert two SLSTR
brightness temperature (BT) bands (S8 - centred on 10.85 µm and S9 - centred on 12
µm) were used to retrieve Trad using a split-window algorithm described by [70]. Apart
from the BTs the algorithm requires Total Column Water Vapour (TCWV) and land
surface emissivity estimates. TCWV was obtained from European Centre for Medium-
range Weather Forecast (ECMWF) reanalysis model. The surface emissivity was estimated
by mixing the emissivity of the soil and vegetation using FVC [70]. Soil emissivity was
assumed to take constant values in the two SLSTR thermal bands, as described in [70],
although this assumption does not take soil moisture into account. Vegetation emissivity
was set to 0.99 for green vegetation and to 0.91 for dry vegetation [88] and combined using
the fg parameter. The surface emissivity was estimated at the S2 spatial resolution before
being averaged to the SLSTR spatial resolution. Cloud masking was based on the internal
mask provided in the SLSTR data �le but similarly to the case of S2 images it was cleaned
up with a 5x5 pixel majority �lter followed by 5x5 pixel dilation.
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Chapter 5

Scienti�c questions to be addressed

in Phase 2, and beyond

There are still remaining some scienti�c questions that could be answered during phase 2
and/or carried out based on future projects and calls.

• What is the e�ect/sensitivity of considering an explicit model for heat and momentum
transfer in complex landscapes such as forest, savannahs and row crops/orchards.

Recent studies have suggested modi�cations in radiation partitioning and wind at-
tenuation models that explicitly account for horizontal and vertical canopy hetero-
geneity [89, 90]. Several of the sites in Table 1.1 could be used to evaluate how those
sub-models perform and extent the validation of these approaches such as Borden
(vineyard), the savannas of Dahra and Majadas and the olive grove in Taous

• What is the sensitivity in two source models of using di�erent resistance formulations
of soil and canopy heat transport.

Besides of the formulations for soil and canopy resistance expressed in Eq. 3.30,
other alternative calculations could be tested, such as the ones in Choudhury and
Monteith [91], McNaughton and Van Den Hurk [92], or Li et al. [93], and see how
they perform at di�erent landscape and/or globally.

• Can other forms of TSEB be more robust

The Priestley-Taylor TSEB is a simple approach in terms of computing the initial
canopy transpiration. Other methods such as the use of Penman-Monteith potential
ET [37] or SPARSE model [38] could be evaluated, especially in sites with some heat
advection as these models usually produce more reliable results in very high vapour
pressure de�cit conditions. On the other hand, multiangular thermal observations
by SLSTR could be used to directly retrieve soil and canopy temperatures [94, 95],
without the need to estimate any potential transpiration nor green fraction.

• How robust is the total LAI and its green fraction fg derived with Sentinel multi-
spectral data.

Majadas de Tiétar in one the most ideal sites to evaluate this variable as it is a
site with a very intensive in situ data collection and the grassland presents a strong
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seasonality, with a senescent phase starting around May and a later regreening in
autumn.

• How can we upscale instantaneous ET to daily ET.

Many applications, such as in precision agriculture, require estimates of daily ET
(usually mm/day) but satellite ET models produce instantaneous ET. Methods to
integrate to daily scales are needed to be explored and tested. Usually these method
rely on the assumption of the daily self-preservation of a �ux metric such as evapo-
rative fraction (EF = λE

Rn−G), in which EF (or other possible metric like λE
S↓

or λE
λE0

, is
usually assumed constant during daytime and hence λEdaily = EFinstantenous (Rn −G)daily

• What is the most suitable ET index that could be used to derive crop water stress.

For irrigation practices not only actual ET is needed but also we need to know the
maximum crop water needs (i.e. the crop potential ET). Furthermore, for regulated
de�cit irrigation practices, it is crucial to assess the crop water stress and keep it
under certain stress thresholds.

• Can the disaggregated ET product detect spatial di�erences of annual water use/water
consumption due to di�erent irrigation/fertilization treatments

Considering the uncertainties in sharpened temperatures, can accumulated metrics,
in which some random errors might be cancelled out, detect spatial or inter-anual
variability in water use, irrigation of fertilization practices? For instance several sites
described in section 1.2.2 have more than one eddy covariance tower, such as in the
case of Borden, with two towers in two adjacent vineyards, or Majadas de Tiétar
with three EC systems on which each one received di�erent NPK fertilization rates.

• What is the uncertainty associated of cloud cover conditions in thermal sharpening.
Or in other words, what is the minimum number of valid pixels to be used in the
machine learning calibration for thermal sharpening?

• What is the best approach to produce gap-�lled daily continuous ET estimates

Optical and thermal satellite remote sensing has the disadvantage that is a�ected by
clouds. Therefore spatiotemporal gaps will be present that needs to be �lled some-
how. Several alternatives could be evaluated, from simple empirical interpolation
and extrapolation gap �lling methods, to linking the satellite information into land
surface model via data assimilation. Being the latest one more sound as it does not
only �ll the gaps but it is also able to forecast future crop status/water availability.
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Chapter 6

Suggestions for future ESA thermal

mission candiate

While the best ET models performed well based on the available input data (Sentinel 2
and Sentinel 3), neither of the models reached an accuracy of 20% which is desirable for
ET assessment for agricultural applications. The current S3 input Trad data were not able
to resolve the resolution of an agricultural �eld or the foot-print of the �ux tower used for
validation, so sharpening of the data is necessary. This will have negative consequences on
the accuracy of the modelled ET, in particular in heterogeneous landscapes, however e�ect
is di�cult to quantify, but the downscaling method seem to in�uence the result. Secondly,
the time of the passage of Sentinel 3 during the morning, before the surface heating has
reached its maximum, leads to less accurate ET measurements.

Based on the prototype implementation of the four ET models, the need for accessibility
of high quality ancillary data for operational processing of ET is highlighted. Land cover
maps form the basis for model dependent input parameters to evapotranspiration models,
for instance vegetation height, thus a up to date land cover map is essential. Land surface
characterization (e.g. albedo, leaf area index) are required at the same spatial resolution as
Trad data, e.g. obtained from Sentinel-2 observations as well as Vegetation height/pro�le
or surface roughness at the similar spatial resolution as Trad data (e.g. from LiDAR
observations) are desirable ancillary data. A list of essential and optional variables is given
in the table below.

The overall recommendations to future LST missons can thus be stated:

• High spatial resolution is required to resolve the spatial resolution of agricultural
�elds or ideally irrigation sectors

• Overpass time needs to be aligned with time of the peak of Trad and sensible heat
�ux ( noon). There should be a compromise between maximum �uxes and minimum
global cloud coverage.

• Ancillary input data essential for operational ET modeling
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Input Parameter Source

Land Cover Map CCI or Sen2Agri

Vegetation state

Leaf Area Index

Sentinel 2
Fraction of green vegetation
FAPAR
Canopy Chlorophyll Content

Radiation
Instantaneous longwave irradiance

ECMWF
Instantaneous shortwave irradiance, direct and di�use

Meteorological forcing

Air temperature 100m

ECMWF

Wind speed 100m
Vapour pressure/dew temperature
Surface pressure
Atmospheric water vapour
Aerosol optical thickness

DEM Optional
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